785 Is Graph Bipartite?
785 Is Graph Bipartite? // bfs class Solution { public boolean isBipartite(int[][] graph) { int n = graph.length; // number of nodes int[] visited = new int[n]; // initial defualt value is 0, we can color as 1 or 2 for(int i = 0; i < graph.length; i++){ // check every node, because graph can have more than one connected component if(visited[i] == 0){ if(!bfs(i, visited, graph)){ return false; } } } return true; } private boolean bfs(int i, int[] visited, int[][] graph){ Queue<Integer> queue = new LinkedList<>(); queue.offer(i); visited[i] = 1; while(!queue.isEmpty()){ int cur = queue.poll(); for(int nei : graph[cur]){ if(visited[nei] == 0){ visited[nei] = visited[cur] == 1 ? 2 : 1; queue.offer(nei); }else{ if(visited[nei] == visited[cur]){ return false; } } } } return true; } }
785. Is Graph Bipartite?
// no need to build a hashmap, since we are given the adj list
// the key is the index, the value is a list of its nei
// no need to have a int[] visited and int[] colored,
// if a node is visited, its colored
// initlize the visited[] as 0, and black is 1, red is 2
// since this might have more than one connected component
// so we want to check every unvisited node
// bfs
class Solution {
public boolean isBipartite(int[][] graph) {
int n = graph.length; // number of nodes
int[] visited = new int[n]; // initial defualt value is 0, we can color as 1 or 2
for(int i = 0; i < graph.length; i++){ // check every node, because graph can have more than one connected component
if(visited[i] == 0){
if(!bfs(i, visited, graph)){
return false;
}
}
}
return true;
}
private boolean bfs(int i, int[] visited, int[][] graph){
Queue<Integer> queue = new LinkedList<>();
queue.offer(i);
visited[i] = 1;
while(!queue.isEmpty()){
int cur = queue.poll();
for(int nei : graph[cur]){
if(visited[nei] == 0){
visited[nei] = visited[cur] == 1 ? 2 : 1;
queue.offer(nei);
}else{
if(visited[nei] == visited[cur]){
return false;
}
}
}
}
return true;
}
}
// dfs not mine 不太明白
class Solution {
public boolean isBipartite(int[][] graph) {
int n = graph.length;
int[] colors = new int[n];
Arrays.fill(colors, -1);
for (int i = 0; i < n; i++) { //This graph might be a disconnected graph. So check each unvisited node.
if (colors[i] == -1 && !validColor(graph, colors, 0, i)) {
return false;
}
}
return true;
}
public boolean validColor(int[][] graph, int[] colors, int color, int node) {
if (colors[node] != -1) {
return colors[node] == color;
}
colors[node] = color;
for (int next : graph[node]) {
if (!validColor(graph, colors, 1 - color, next)) {
return false;
}
}
return true;
}
}
Given an undirected graph, return true if and only if it is bipartite.
Recall that a graph is bipartite if we can split it's set of nodes into two independent subsets A and B such that every edge in the graph has one node in A and another node in B.
The graph is given in the following form: graph[i] is a list of indexes j for which the edge between nodes i and j exists. Each node is an integer between 0 and graph.length - 1. There are no self edges or parallel edges: graph[i] does not contain i, and it doesn't contain any element twice.
Example 1:
Input: [[1,3], [0,2], [1,3], [0,2]]
Output: true
Explanation:
The graph looks like this:
0----1
| |
| |
3----2
We can divide the vertices into two groups: {0, 2} and {1, 3}.
Example 2: Input: [[1,2,3], [0,2], [0,1,3], [0,2]] Output: false Explanation: The graph looks like this: 0----1 | \ | | \ | 3----2 We cannot find a way to divide the set of nodes into two independent subsets.
posted on 2018-08-09 17:52 猪猪🐷 阅读(135) 评论(0) 收藏 举报
浙公网安备 33010602011771号