216. Combination Sum III
class Solution { public List<List<Integer>> combinationSum3(int k, int n) { List<List<Integer>> result = new ArrayList<>(); List<Integer> tmp = new ArrayList<>(); dfs(result, tmp, k, n, 1); return result; } private void dfs(List<List<Integer>> result, List<Integer> tmp, int size, int target, int start){ if(target == 0 && tmp.size() == size){ result.add(new ArrayList<>(tmp)); return; } for(int i = start; i <= 9; i++){ // pruning if(i > target) return; tmp.add(i); dfs(result, tmp, size, target - i, i + 1); // every element used only once, hence i + 1 tmp.remove(tmp.size() - 1); } } }
class Solution { public List<List<Integer>> combinationSum3(int k, int n) { List<List<Integer>> res = new ArrayList<>(); dfs(res, new ArrayList<>(), k, n, 1, 0); return res; } private void dfs(List<List<Integer>> res, List<Integer> tmp, int k, int n, int start, int curSum){ // base case if(tmp.size() == k && curSum == n){ res.add(new ArrayList<>(tmp)); return; } if(tmp.size() > k || curSum > n) return; for(int i = start; i <= 9; i++){ tmp.add(i); dfs(res, tmp, k, n, i + 1, curSum + i); tmp.remove(tmp.size() - 1); } } }
Find all possible combinations of k numbers that add up to a number n, given that only numbers from 1 to 9 can be used and each combination should be a unique set of numbers.
Note:
- All numbers will be positive integers.
- The solution set must not contain duplicate combinations.
Example 1:
Input: k = 3, n = 7 Output: [[1,2,4]]
Example 2:
Input: k = 3, n = 9 Output: [[1,2,6], [1,3,5], [2,3,4]]
idea: every element can be used only once, so use a start index to record the current index, the next level starts at start index + 1
posted on 2018-07-18 08:07 猪猪🐷 阅读(85) 评论(0) 收藏 举报
浙公网安备 33010602011771号