随笔 - 12  文章 - 0  评论 - 44  1

如何让你的SQL运行得更快  
  人们在使用SQL时往往会陷入一个误区,即太关注于所得的结果是否正确,而忽略了不同的实现方法之间可能存在的性能差异,这种性能差异在大型的或是复杂的数据库环境中(如联机事务处理OLTP或决策支持系统DSS)中表现得尤为明显。笔者在工作实践中发现,不良的SQL往往来自于不恰当的索引设计、不充份的连接条件和不可优化的where子句。在对它们进行适当的优化后,其运行速度有了明显地提高!下面我将从这三个方面分别进行总结:
  ----为了更直观地说明问题,所有实例中的SQL运行时间均经过测试,不超过1秒的均表示为(<1秒)。
  ----测试环境--
  ----主机:HPLHII
  ----主频:330MHZ
  ----内存:128兆
  ----操作系统:Operserver5.0.4
  ----数据库:Sybase11.0.3
  一、不合理的索引设计
  例:表record有620000行,试看在不同的索引下,下面几个SQL的运行情况:
  1.在date上建有一非个群集索引
  select count(*) from record wheredate>'19991201' and date<'19991214' and amount>2000(25秒)
  select date,sum(amount) from record group by date (55秒)
  select count(*) from record where date>'19990901' and placein('BJ','SH')(27秒)
  分析:date上有大量的重复值,在非群集索引下,数据在物理上随机存放在数据页上,在范围查找时,必须执行一次表扫描才能找到这一范围内的全部行。
  2.在date上的一个群集索引
  select count(*) from record where date>'19991201' and date<'19991214' and amount>2000(14秒)
  select date,sum(amount) from record group by date(28秒)
  select count(*) from record where date> '19990901' and placein('BJ','SH')(14秒)
  分析:在群集索引下,数据在物理上按顺序在数据页上,重复值也排列在一起,因而在范围查找时,可以先找到这个范围的起末点,且只在这个范围内扫描数据页,避免了大范围扫描,提高了查询速度。
  3.在place,date,amount上的组合索引
  select count(*) from record where date>'19991201' and date<'19991214' and amount> 2000(26秒)
  select date,sum(amount) from record group by date(27秒)
  select count(*) from record where date>'19990901' and placein('BJ','SH')(<1秒)
  分析:这是一个不很合理的组合索引,因为它的前导列是place,第一和第二条SQL没有引用place,因此也没有利用上索引;第三个SQL使用了place,且引用的所有列都包含在组合索引中,形成了索引覆盖,所以它的速度是非常快的。
  4.在date,place,amount上的组合索引
  select count(*) from record where date> '19991201' and date<'19991214' and amount> 2000(<1秒)
  select date,sum(amount) from record group by date(11秒)
  select count(*) from record where date> '19990901' and placein('BJ','SH')(<1秒)
  分析:这是一个合理的组合索引。它将date作为前导列,使每个SQL都可以利用索引,并且在第一和第三个SQL中形成了索引覆盖,因而性能达到了最优。
  5.总结:
  缺省情况下建立的索引是非群集索引,但有时它并不是最佳的;合理的索引设计要建立在对各种查询的分析和预测上。
  一般来说:
  ①.有大量重复值、且经常有范围查询
  (between,>,<,>=,<=)和orderby 、groupby发生的列,可考虑建立群集索引;
  ②.经常同时存取多列,且每列都含有重复值可考虑建立组合索引;
  ③.组合索引要尽量使关键查询形成索引覆盖,其前导列一定是使用最频繁的列。
 
  二、不充份的连接条件:
  例:表card有7896行,在card_no上有一个非聚集索引,表account有191122行,在account_no上有一个非聚集索引,试看在不同的表连接条件下,两个SQL的执行情况:
  select sum(a.amount) from accounta,  cardb where a.card_no=b.card_no(20秒)
  将SQL改为:select sum(a.amount) from accounta, cardb where a.card_no=b.card_no and a.account_no=b.account_no(<1秒)
  分析:在第一个连接条件下,最佳查询方案是将account作外层表,card作内层表,利用card上的索引,其I/O次数可由以下公式估算为:外层表account上的22541页+(外层表account的191122行*内层表card上对应外层表第一行所要查找的3页)=595907次I/O;在第二个连接条件下,最佳查询方案是将card作外层表,account作内层表,利用account上的索引,其I/O次数可由以下公式估算为:外层表card上的1944页+(外层表card的7896行*内层表account上对应外层表每一行所要查找的4页)=33528次I/O,可见,只有充份的连接条件,真正的最佳方案才会被执行。
  总结:
  1.多表操作在被实际执行前,查询优化器会根据连接条件,列出几组可能的连接方案并从中找出系统开销最小的最佳方案。连接条件要充份考虑带有索引的表、行数多的表;内外表的选择可由公式:外层表中的匹配行数*内层表中每一次查找的次数确定,乘积最小为最佳方案。
  2.查看执行方案的方法--用setshowplanon,打开showplan选项,就可以看到连接顺序、使用何种索引的信息;想看更详细的信息,需用sa角色执行dbcc(3604,310,302)。
  三、不可优化的where子句
  1.例:下列SQL条件语句中的列都建有恰当的索引,但执行速度却非常慢:
  select * from record where substring(card_no,1,4)='5378'(13秒)
  select * from record where amount/30<1000(11秒)
  select * from record where convert(char(10),date,112)='19991201'(10秒)
  分析:where子句中对列的任何操作结果都是在SQL运行时逐列计算得到的,因此它不得不进行表搜索,而没有使用该列上面的索引;如果这些结果在查询编译时就能得到,那么就可以被SQL优化器优化,使用索引,避免表搜索,因此将SQL重写成下面这样:
  select * from record where card_nolike '5378%'(<1秒)
  select * from record where amount <1000*30(<1秒)
  select * from record where date='1999/12/01'(<1秒)
  你会发现SQL明显快起来!
  2.例:表stuff有200000行,id_no上有非群集索引,请看下面这个SQL:
  select count(*) from stuff where id_noin('0','1')(23秒)
  分析:where条件中的'in'在逻辑上相当于'or',所以语法分析器会将in('0','1')转化为id_no='0'orid_no='1'来执行。我们期望它会根据每个or子句分别查找,再将结果相加,这样可以利用id_no上的索引;但实际上(根据showplan),它却采用了"OR策略",即先取出满足每个or子句的行,存入临时数据库的工作表中,再建立唯一索引以去掉重复行,最后从这个临时表中计算结果。因此,实际过程没有利用id_no上索引,并且完成时间还要受tempdb数据库性能的影响。
  实践证明,表的行数越多,工作表的性能就越差,当stuff有620000行时,执行时间竟达到220秒!还不如将or子句分开:
  select count(*) from stuff where id_no='0'
  select count(*) from stuff whereid_no='1'
  得到两个结果,再作一次加法合算。因为每句都使用了索引,执行时间只有3秒,在620000行下,时间也只有4秒。或者,用更好的方法,写一个简单的存储过程:
  create proccount_stuffas
  declare @aint
  declare @bint
  declare @cint
  declare @dchar(10)
  begin
  select @a=count(*) from stuff where id_no='0'
  select @b=count(*) from stuff where id_no='1'
  end
  select @c=@a+@b
  select @d=convert(char(10),@c)
  print @d
  直接算出结果,执行时间同上面一样快!
  总结:

 可见,所谓优化即where子句利用了索引,不可优化即发生了表扫描或额外开销。 
  1.任何对列的操作都将导致表扫描,它包括数据库函数、计算表达式等等,查询时要尽可能将操作移至等号右边。
  2.in、or子句常会使用工作表,使索引失效;如果不产生大量重复值,可以考虑把子句拆开;拆开的子句中应该包含索引。
  3.要善于使用存储过程,它使SQL变得更加灵活和高效。
  从以上这些例子可以看出,SQL优化的实质就是在结果正确的前提下,用优化器可以识别的语句,充份利用索引,减少表扫描的I/O次数,尽量避免表搜索的发生。其实SQL的性能优化是一个复杂的过程,上述这些只是在应用层次的一种体现,深入研究还会涉及数据库层的资源配置、网络层的流量控制以及操作系统层的总体设计。
  4.合理使用索引 
  索引是数据库中重要的数据结构,它的根本目的就是为了提高查询效率。现在大多数的数据库产品都采用IBM最先提出的ISAM索引结构。索引的使用要恰到好处,其使用原则如下: 
  ●在经常进行连接,但是没有指定为外键的列上建立索引,而不经常连接的字段则由优化器自动生成索引。 
  ●在频繁进行排序或分组(即进行groupby或orderby操作)的列上建立索引。 
  ●在条件表达式中经常用到的不同值较多的列上建立检索,在不同值少的列上不要建立索引。比如在雇员表的“性别”列上只有“男”与“女”两个不同值,因此就无必要建立索引。如果建立索引不但不会提高查询效率,反而会严重降低更新速度。 
  ●如果待排序的列有多个,可以在这些列上建立复合索引(compoundindex)。 
  ●使用系统工具。如Informix数据库有一个tbcheck工具,可以在可疑的索引上进行检查。在一些数据库服务器上,索引可能失效或者因为频繁操作而使得读取效率降低,如果一个使用索引的查询不明不白地慢下来,可以试着用tbcheck工具检查索引的完整性,必要时进行修复。另外,当数据库表更新大量数据后,删除并重建索引可以提高查询速度。

posted on 2009-03-25 14:33  Play code  阅读(1118)  评论(4编辑  收藏