memcached——分布式内存对象缓存系统

memcached是什么?

  memcached 是以LiveJournal 旗下Danga Interactive 公司的Brad Fitzpatric 为首开发的一款软件。现在已成为 mixi、 hatena、 Facebook、 Vox、LiveJournal等众多服务中 提高Web应用扩展性的重要因素。

  许多Web应用都将数据保存到RDBMS中,应用服务器从中读取数据并在浏览器中显示。 但随着数据量的增大、访问的集中,就会出现RDBMS的负担加重、数据库响应恶化、 网站显示延迟等重大影响。

  这时就该memcached大显身手了。memcached是高性能的分布式内存缓存服务器。 一般的使用目的是,通过缓存数据库查询结果,减少数据库访问次数,以提高动态Web应用的速度、 提高可扩展性。

 

图1 一般情况下memcached的用途

  其实也不是很复杂,就是用软件搭建起来的数据库缓存系统

 

memcached的特征

 memcached作为高速运行的分布式缓存服务器,具有以下的特点。
 协议简单
 基于libevent的事件处理
 内置内存存储方式
 memcached不互相通信的分布式

协议简单
  memcached的服务器客户端通信并不使用复杂的XML等格式, 而使用简单的基于文本行的协议。因此,通过telnet 也能在memcached上保存数据、取得数据。下面是例子。

$ telnet localhost 11211
Trying 127.0.0.1...
Connected to localhost.localdomain (127.0.0.1).
Escape character is '^]'.
set foo 0 0 3     (保存命令)
bar               (数据)
STORED            (结果)
get foo           (取得命令)
VALUE foo 0 3     (数据)
bar               (数据)

  协议文档位于memcached的源代码内,也可以参考以下的URL。

http://code.sixapart.com/svn/memcached/trunk/server/doc/protocol.txt

 

基于libevent的事件处理

  libevent是个程序库,它将Linux的epoll、BSD类操作系统的kqueue等事件处理功能 封装成统一的接口。即使对服务器的连接数增加,也能发挥O(1)的性能。 memcached使用这个libevent库,因此能在Linux、BSD、Solaris等操作系统上发挥其高性能。 关于事件处理这里就不再详细介绍,可以参考Dan Kegel的The C10K Problem。

libevent: http://www.monkey.org/~provos/libevent/

The C10K Problem: http://www.kegel.com/c10k.html

 

内置内存存储方式

  为了提高性能,memcached中保存的数据都存储在memcached内置的内存存储空间中。 由于数据仅存在于内存中,因此重启memcached、重启操作系统会导致全部数据消失。 另外,内容容量达到指定值之后,就基于LRU(Least Recently Used)算法自动删除不使用的缓存。 memcached本身是为缓存而设计的服务器,因此并没有过多考虑数据的永久性问题。 关于内存存储的详细信息,本连载的第二讲以后前坂会进行介绍,请届时参考。

 

memcached不互相通信的分布式

  memcached尽管是“分布式”缓存服务器,但服务器端并没有分布式功能。 各个memcached不会互相通信以共享信息。那么,怎样进行分布式呢? 这完全取决于客户端的实现。本连载也将介绍memcached的分布式。

图2 memcached的分布式

接下来简单介绍一下memcached的使用方法。

 

安装memcached

memcached的安装比较简单,这里稍加说明。

memcached支持许多平台。
Linux
FreeBSD
Solaris (memcached 1.2.5以上版本)
Mac OS X
  另外也能安装在Windows上。这里使用Fedora Core 8进行说明。

 

memcached的安装

  运行memcached需要本文开头介绍的libevent库。Fedora 8中有现成的rpm包, 通过yum命令安装即可。

$ sudo yum install libevent libevent-devel

  memcached的源代码可以从memcached网站上下载。本文执笔时的最新版本为1.2.5。 Fedora 8虽然也包含了memcached的rpm,但版本比较老。因为源代码安装并不困难, 这里就不使用rpm了。

  下载memcached:http://www.danga.com/memcached/download.bml

memcached安装与一般应用程序相同,configure、make、make install就行了。

$ wget http://www.danga.com/memcached/dist/memcached-1.2.5.tar.gz
$ tar zxf memcached-1.2.5.tar.gz
$ cd memcached-1.2.5
$ ./configure
$ make
$ sudo make install
默认情况下memcached安装到/usr/local/bin下。

 

memcached的启动

从终端输入以下命令,启动memcached。

$ /usr/local/bin/memcached -p 11211 -m 64m -vv
slab class   1: chunk size     88 perslab 11915
slab class   2: chunk size    112 perslab  9362
slab class   3: chunk size    144 perslab  7281
中间省略
slab class  38: chunk size 391224 perslab     2
slab class  39: chunk size 489032 perslab     2
<23 server listening
<24 send buffer was 110592, now 268435456
<24 server listening (udp)
<24 server listening (udp)
<24 server listening (udp)
<24 server listening (udp)

  这里显示了调试信息。这样就在前台启动了memcached,监听TCP端口11211 最大内存使用量为64M。调试信息的内容大部分是关于存储的信息, 下次连载时具体说明。

  作为daemon后台启动时,只需

$ /usr/local/bin/memcached -p 11211 -m 64m -d

  这里使用的memcached启动选项的内容如下。

参数说明

-p 使用的TCP端口。默认为11211

-m 最大内存大小。默认为64M

-vv 用very vrebose模式启动,调试信息和错误输出到控制台

-d 作为daemon在后台启动

上面四个是常用的启动选项,其他还有很多,通过

$ /usr/local/bin/memcached -h
命令可以显示。许多选项可以改变memcached的各种行为, 推荐读一读。

 

用客户端连接

  许多语言都实现了连接memcached的客户端,其中以Perl、PHP为主。 仅仅memcached网站上列出的语言就有

Perl、PHP、Python、Ruby、C#、C/C++、Lua等等。

memcached客户端API:http://www.danga.com/memcached/apis.bml

这里介绍通过mixi正在使用的Perl库链接memcached的方法。

使用Cache::Memcached

Perl的memcached客户端有

Cache::Memcached

Cache::Memcached::Fast

Cache::Memcached::libmemcached

  等几个CPAN模块。这里介绍的Cache::Memcached是memcached的作者Brad Fitzpatric的作品, 应该算是memcached的客户端中应用最为广泛的模块了。

Cache::Memcached - search.cpan.org: http://search.cpan.org/dist/Cache-Memcached/

使用Cache::Memcached连接memcached

下面的源代码为通过Cache::Memcached连接刚才启动的memcached的例子。

#!/usr/bin/perl

use strict;

use warnings;

use Cache::Memcached;

my $key = "foo";

my $value = "bar";

my $expires = 3600; # 1 hour

my $memcached = Cache::Memcached->new({

    servers => ["127.0.0.1:11211"],

    compress_threshold => 10_000

});

$memcached->add($key, $value, $expires);

my $ret = $memcached->get($key);

print "$ret\n";

在这里,为Cache::Memcached指定了memcached服务器的IP地址和一个选项,以生成实例。 Cache::Memcached常用的选项如下所示。

选项说明

servers 用数组指定memcached服务器和端口

compress_threshold 数据压缩时使用的值

namespace 指定添加到键的前缀

另外,Cache::Memcached通过Storable模块可以将Perl的复杂数据序列化之后再保存, 因此散列、数组、对象等都可以直接保存到memcached中。

 

保存数据

向memcached保存数据的方法有

add

replace

set

它们的使用方法都相同:

my $add = $memcached->add( '键', '值', '期限' );

my $replace = $memcached->replace( '键', '值', '期限' );

my $set = $memcached->set( '键', '值', '期限' );

向memcached保存数据时可以指定期限(秒)。不指定期限时,memcached按照LRU算法保存数据。 这三个方法的区别如下:

选项说明

add 仅当存储空间中不存在键相同的数据时才保存

replace 仅当存储空间中存在键相同的数据时才保存

set 与add和replace不同,无论何时都保存

获取数据

获取数据可以使用get和get_multi方法。

my $val = $memcached->get('键');

my $val = $memcached->get_multi('键1', '键2', '键3', '键4', '键5');

  一次取得多条数据时使用get_multi。get_multi可以非同步地同时取得多个键值, 其速度要比循环调用get快数十倍。

删除数据

删除数据使用delete方法,不过它有个独特的功能。

$memcached->delete('键', '阻塞时间(秒)');

  删除第一个参数指定的键的数据。第二个参数指定一个时间值,可以禁止使用同样的键保存新数据。 此功能可以用于防止缓存数据的不完整。但是要注意,set函数忽视该阻塞,照常保存数据

增一和减一操作

可以将memcached上特定的键值作为计数器使用。

my $ret = $memcached->incr('键');

$memcached->add('键', 0) unless defined $ret;

  增一和减一是原子操作,但未设置初始值时,不会自动赋成0。因此, 应当进行错误检查,必要时加入初始化操作。而且,服务器端也不会对 超过2 32时的行为进行检查。

 

总结

  这次简单介绍了memcached,以及它的安装方法、Perl客户端Cache::Memcached的用法。 只要知道,memcached的使用方法十分简单就足够了。

  下次由前坂来说明memcached的内部结构。了解memcached的内部构造, 就能知道如何使用memcached才能使Web应用的速度更上一层楼。 

 

More

理解memcached的内存存储:http://tech.idv2.com/2008/07/11/memcached-002/
memcached的删除机制和发展方向:http://tech.idv2.com/2008/07/16/memcached-003/

 

Slab Allocation机制:整理内存以便重复使用

最近的memcached默认情况下采用了名为Slab Allocator的机制分配、管理内存。 在该机制出现以前,内存的分配是通过对所有记录简单地进行malloc和free来进行的。 但是,这种方式会导致内存碎片,加重操作系统内存管理器的负担,最坏的情况下, 会导致操作系统比memcached进程本身还慢。Slab Allocator就是为解决该问题而诞生的。

下面来看看Slab Allocator的原理。下面是memcached文档中的slab allocator的目标:

the primary goal of the slabs subsystem in memcached was to eliminate memory fragmentation issues totally by using fixed-size memory chunks coming from a few predetermined size classes.

也就是说,Slab Allocator的基本原理是按照预先规定的大小,将分配的内存分割成特定长度的块, 以完全解决内存碎片问题。

Slab Allocation的原理相当简单。 将分配的内存分割成各种尺寸的块(chunk), 并把尺寸相同的块分成组(chunk的集合)(图1)。

memcached-0002-01.png

图1 Slab Allocation的构造图

而且,slab allocator还有重复使用已分配的内存的目的。 也就是说,分配到的内存不会释放,而是重复利用。

Slab Allocation的主要术语

Page

分配给Slab的内存空间,默认是1MB。分配给Slab之后根据slab的大小切分成chunk。

Chunk

用于缓存记录的内存空间。

Slab Class

特定大小的chunk的组。

在Slab中缓存记录的原理

下面说明memcached如何针对客户端发送的数据选择slab并缓存到chunk中。

memcached根据收到的数据的大小,选择最适合数据大小的slab(图2)。 memcached中保存着slab内空闲chunk的列表,根据该列表选择chunk, 然后将数据缓存于其中。

memcached-0002-02.png

图2 选择存储记录的组的方法

实际上,Slab Allocator也是有利也有弊。下面介绍一下它的缺点。

Slab Allocator的缺点

Slab Allocator解决了当初的内存碎片问题,但新的机制也给memcached带来了新的问题。

这个问题就是,由于分配的是特定长度的内存,因此无法有效利用分配的内存。 例如,将100字节的数据缓存到128字节的chunk中,剩余的28字节就浪费了(图3)。

memcached-0002-03.png

图3 chunk空间的使用

对于该问题目前还没有完美的解决方案,但在文档中记载了比较有效的解决方案。

The most efficient way to reduce the waste is to use a list of size classes that closely matches (if that’s at all possible) common sizes of objects that the clients of this particular installation of memcached are likely to store.

就是说,如果预先知道客户端发送的数据的公用大小,或者仅缓存大小相同的数据的情况下, 只要使用适合数据大小的组的列表,就可以减少浪费。

但是很遗憾,现在还不能进行任何调优,只能期待以后的版本了。 但是,我们可以调节slab class的大小的差别。 接下来说明growth factor选项。

使用Growth Factor进行调优

memcached在启动时指定 Growth Factor因子(通过-f选项), 就可以在某种程度上控制slab之间的差异。默认值为1.25。 但是,在该选项出现之前,这个因子曾经固定为2,称为“powers of 2”策略。

让我们用以前的设置,以verbose模式启动memcached试试看:

$ memcached -f 2 -vv 

下面是启动后的verbose输出:

slab class   1: chunk size    128 perslab  8192 slab class   2: chunk size    256 perslab  4096 slab class   3: chunk size    512 perslab  2048 slab class   4: chunk size   1024 perslab  1024 slab class   5: chunk size   2048 perslab   512 slab class   6: chunk size   4096 perslab   256 slab class   7: chunk size   8192 perslab   128 slab class   8: chunk size  16384 perslab    64 slab class   9: chunk size  32768 perslab    32 slab class  10: chunk size  65536 perslab    16 slab class  11: chunk size 131072 perslab     8 slab class  12: chunk size 262144 perslab     4 slab class  13: chunk size 524288 perslab     2 

可见,从128字节的组开始,组的大小依次增大为原来的2倍。 这样设置的问题是,slab之间的差别比较大,有些情况下就相当浪费内存。 因此,为尽量减少内存浪费,两年前追加了growth factor这个选项。

来看看现在的默认设置(f=1.25)时的输出(篇幅所限,这里只写到第10组):

slab class   1: chunk size     88 perslab 11915 slab class   2: chunk size    112 perslab  9362 slab class   3: chunk size    144 perslab  7281 slab class   4: chunk size    184 perslab  5698 slab class   5: chunk size    232 perslab  4519 slab class   6: chunk size    296 perslab  3542 slab class   7: chunk size    376 perslab  2788 slab class   8: chunk size    472 perslab  2221 slab class   9: chunk size    592 perslab  1771 slab class  10: chunk size    744 perslab  1409 

可见,组间差距比因子为2时小得多,更适合缓存几百字节的记录。 从上面的输出结果来看,可能会觉得有些计算误差, 这些误差是为了保持字节数的对齐而故意设置的。

将memcached引入产品,或是直接使用默认值进行部署时, 最好是重新计算一下数据的预期平均长度,调整growth factor, 以获得最恰当的设置。内存是珍贵的资源,浪费就太可惜了。

接下来介绍一下如何使用memcached的stats命令查看slabs的利用率等各种各样的信息。

查看memcached的内部状态

memcached有个名为stats的命令,使用它可以获得各种各样的信息。 执行命令的方法很多,用telnet最为简单:

$ telnet 主机名 端口号 

连接到memcached之后,输入stats再按回车,即可获得包括资源利用率在内的各种信息。 此外,输入”stats slabs”或”stats items”还可以获得关于缓存记录的信息。 结束程序请输入quit。

这些命令的详细信息可以参考memcached软件包内的protocol.txt文档。

$ telnet localhost 11211 Trying ::1... Connected to localhost. Escape character is '^]'. stats STAT pid 481 STAT uptime 16574 STAT time 1213687612 STAT version 1.2.5 STAT pointer_size 32 STAT rusage_user 0.102297 STAT rusage_system 0.214317 STAT curr_items 0 STAT total_items 0 STAT bytes 0 STAT curr_connections 6 STAT total_connections 8 STAT connection_structures 7 STAT cmd_get 0 STAT cmd_set 0 STAT get_hits 0 STAT get_misses 0 STAT evictions 0 STAT bytes_read 20 STAT bytes_written 465 STAT limit_maxbytes 67108864 STAT threads 4 END quit 

另外,如果安装了libmemcached这个面向C/C++语言的客户端库,就会安装 memstat 这个命令。 使用方法很简单,可以用更少的步骤获得与telnet相同的信息,还能一次性从多台服务器获得信息。

$ memstat --servers=server1,server2,server3,... 

libmemcached可以从下面的地址获得:

  • http://tangent.org/552/libmemcached.html

查看slabs的使用状况

使用memcached的创造着Brad写的名为memcached-tool的Perl脚本,可以方便地获得slab的使用情况 (它将memcached的返回值整理成容易阅读的格式)。可以从下面的地址获得脚本:

  • http://code.sixapart.com/svn/memcached/trunk/server/scripts/memcached-tool

使用方法也极其简单:

$ memcached-tool 主机名:端口 选项 

查看slabs使用状况时无需指定选项,因此用下面的命令即可:

$ memcached-tool 主机名:端口 

获得的信息如下所示:

 #  Item_Size   Max_age  1MB_pages Count   Full?  1     104 B  1394292 s    1215 12249628    yes  2     136 B  1456795 s      52  400919     yes  3     176 B  1339587 s      33  196567     yes  4     224 B  1360926 s     109  510221     yes  5     280 B  1570071 s      49  183452     yes  6     352 B  1592051 s      77  229197     yes  7     440 B  1517732 s      66  157183     yes  8     552 B  1460821 s      62  117697     yes  9     696 B  1521917 s     143  215308     yes 10     872 B  1695035 s     205  246162     yes 11     1.1 kB 1681650 s     233  221968     yes 12     1.3 kB 1603363 s     241  183621     yes 13     1.7 kB 1634218 s      94   57197     yes 14     2.1 kB 1695038 s      75   36488     yes 15     2.6 kB 1747075 s      65   25203     yes 16     3.3 kB 1760661 s      78   24167     yes 

各列的含义为:

含义
# slab class编号
Item_Size Chunk大小
Max_age LRU内最旧的记录的生存时间
1MB_pages 分配给Slab的页数
Count Slab内的记录数
Full? Slab内是否含有空闲chunk

从这个脚本获得的信息对于调优非常方便,强烈推荐使用。

 

 

 

posted on 2012-09-26 22:04  啊T  阅读(513)  评论(0编辑  收藏  举报