279. 完全平方数

给定正整数 n,找到若干个完全平方数(比如 1, 4, 9, 16, ...)使得它们的和等于 n。你需要让组成和的完全平方数的个数最少。

给你一个整数 n ,返回和为 n 的完全平方数的 最少数量 。

完全平方数 是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,1、4、9 和 16 都是完全平方数,而 3 和 11 不是。

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/perfect-squares
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

动态规划

class Solution {
    public int numSquares(int n) {
        int[] dp = new int[n + 1];
        for (int i = 1; i <= n; i++) {
            dp[i] = Integer.MAX_VALUE;
            for (int j = 1; j * j <= i; j++) {
                dp[i] = Math.min(dp[i], dp[i - j * j] + 1);
            }
        }
        return dp[n];
    }
}

数学

class Solution {
    public int numSquares(int n) {
        if (isPerfectSquare(n)) {
            return 1;
        }
        if (checkAnswer4(n)) {
            return 4;
        }
        for (int i = 1; i * i <= n; i++) {
            int j = n - i * i;
            if (isPerfectSquare(j)) {
                return 2;
            }
        }
        return 3;
    }

    // 判断是否为完全平方数
    public boolean isPerfectSquare(int x) {
        int y = (int) Math.sqrt(x + 0.5);
        return y * y == x;
    }

    // 判断是否能表示为 4^k*(8m+7)
    public boolean checkAnswer4(int x) {
        while (x % 4 == 0) {
            x /= 4;
        }
        return x % 8 == 7;
    }
}
posted @ 2021-12-21 14:49  Tianyiya  阅读(57)  评论(0)    收藏  举报