60. 排列序列
给出集合 [1,2,3,...,n],其所有元素共有 n! 种排列。
按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下:
"123"
"132"
"213"
"231"
"312"
"321"
给定 n 和 k,返回第 k 个排列。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/permutation-sequence
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
原问题
import java.util.Arrays;
class Solution {
public String getPermutation(int n, int k) {
int[] factorial = new int[n];
factorial[0] = 1;
for (int i = 1; i < n; ++i) {
factorial[i] = factorial[i - 1] * i;
}
StringBuilder ans = new StringBuilder();
int[] valid = new int[n + 1];
Arrays.fill(valid, 1);
for (int i = 1; i <= n; ++i) {
int order = (k - 1) / factorial[n - i] + 1;
for (int j = 1; j <= n; ++j) {
order -= valid[j];
if (order == 0) {
ans.append(j);
valid[j] = 0;
break;
}
}
k = (k - 1) % factorial[n - i] + 1;
}
return ans.toString();
}
}
官方题解思考题
iimport java.util.Arrays;
import java.util.Scanner;
class Solution {
private int getK(String str) {
int n = str.length();
int s = 1;
for (int i = 2; i <= n; ++i) {
s *= i;
}
int[] valid = new int[n + 1];
Arrays.fill(valid, 1);
int ret = 0;
for (int i = 0; i < str.length(); ++i) {
s /= (n--);
int digit = str.charAt(i) - '0';
int r = 0;
for (int j = 1; j <= digit; ++j) {
r += valid[j];
}
ret += (r - 1) * s;
valid[digit] = 0;
}
return ret + 1;
}
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
while (in.hasNext()) {
System.out.println(new Solution().getK(in.next()));
}
}
}
心之所向,素履以往 生如逆旅,一苇以航

浙公网安备 33010602011771号