188. 买卖股票的最佳时机 IV
给定一个整数数组 prices ,它的第 i 个元素 prices[i] 是一支给定的股票在第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你最多可以完成 k 笔交易。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/best-time-to-buy-and-sell-stock-iv
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
动态规划(方法一)
class Solution {
private int all(int[] prices) {
int ret = 0;
for (int i = 1; i < prices.length; ++i) {
if (prices[i] > prices[i - 1]) {
ret += prices[i] - prices[i - 1];
}
}
return ret;
}
public int maxProfit(int k, int[] prices) {
if (prices == null || prices.length == 0) {
return 0;
}
int n = prices.length;
if (k >= n / 2) {
return all(prices);
}
/**
* dp[i][j] =
* dp[i - 1][j]
* dp[i][j-1] - prices[i] + prices[i]
* dp[i-1][j-1] - prices[i-1] + prices[i]
* dp[0][j-1] - prices[0] + prices[i]
*
*/
int[][] dp = new int[n][k + 1];
// for (int i = 1; i < n; ++i) {
// for (int j = 1; j <= k; ++j) {
// dp[i][j] = dp[i - 1][j];
// for (int s = 0; s <= i; ++s) {
// dp[i][j] = Math.max(dp[i][j], dp[s][j - 1] - prices[s] + prices[i]);
// }
// }
// }
for (int j = 1; j <= k; ++j) {
int pre = -prices[0];
for (int i = 1; i < n; ++i) {
dp[i][j] = Math.max(dp[i - 1][j], Math.max(pre, dp[i][j - 1] - prices[i]) + prices[i]);
pre = Math.max(pre, dp[i][j - 1] - prices[i]);
}
}
return dp[n - 1][k];
}
public static void main(String[] args) {
int k = 2;
int[] prices = {3, 2, 6, 5, 0, 3};
System.out.println(new Solution().maxProfit(k, prices));
}
}
动态规划(方法二)
import java.util.Arrays;
class Solution {
private int all(int[] prices) {
int ret = 0;
for (int i = 1; i < prices.length; ++i) {
if (prices[i] > prices[i - 1]) {
ret += prices[i] - prices[i - 1];
}
}
return ret;
}
public int maxProfit(int k, int[] prices) {
if (prices == null || prices.length == 0) {
return 0;
}
int n = prices.length;
if (k >= n / 2) {
return all(prices);
}
int[][] hold = new int[n][k + 1];
int[][] noHold = new int[n][k + 1];
hold[0][0] = -prices[0];
for (int i = 1; i < n; ++i) {
hold[i][0] = Math.max(hold[i - 1][0], -prices[i]);
}
for (int i = 1; i <= k; ++i) {
hold[0][i] = Integer.MIN_VALUE / 2;
}
for (int i = 1; i < n; ++i) {
for (int j = 1; j <= k; ++j) {
hold[i][j] = Math.max(hold[i - 1][j], noHold[i - 1][j] - prices[i]);
noHold[i][j] = Math.max(noHold[i - 1][j], hold[i - 1][j - 1] + prices[i]);
}
}
return Arrays.stream(noHold[n - 1]).max().getAsInt();
}
}
方法二
与方法二定义一次交易不同,相应的状态转移方程也不同
import java.util.Arrays;
class Solution {
private int all(int[] prices) {
int ret = 0;
for (int i = 1; i < prices.length; ++i) {
if (prices[i] > prices[i - 1]) {
ret += prices[i] - prices[i - 1];
}
}
return ret;
}
public int maxProfit(int k, int[] prices) {
if (prices == null || prices.length == 0) {
return 0;
}
int n = prices.length;
if (k >= n / 2) {
return all(prices);
}
int[][] hold = new int[n][k + 1];
int[][] noHold = new int[n][k + 1];
for (int i = 0; i < n; ++i) {
hold[i][0] = Integer.MIN_VALUE;
}
for (int j = 1; j <= k; ++j) {
hold[0][j] = -prices[0];
}
for (int i = 1; i < n; ++i) {
for (int j = 1; j <= k; ++j) {
hold[i][j] = Math.max(hold[i - 1][j], noHold[i - 1][j - 1] - prices[i]);
noHold[i][j] = Math.max(noHold[i - 1][j], hold[i - 1][j] + prices[i]);
}
}
return Arrays.stream(noHold[n - 1]).max().getAsInt();
}
}
动态规划(方法二的空间压缩)
import java.util.Arrays;
class Solution {
private int all(int[] prices) {
int ret = 0;
for (int i = 1; i < prices.length; ++i) {
if (prices[i] > prices[i - 1]) {
ret += prices[i] - prices[i - 1];
}
}
return ret;
}
public int maxProfit(int k, int[] prices) {
if (prices == null || prices.length == 0) {
return 0;
}
int n = prices.length;
if (k >= n / 2) {
return all(prices);
}
int[] hold = new int[k + 1];
int[] noHold = new int[k + 1];
hold[0] = -prices[0];
for (int i = 1; i <= k; ++i) {
hold[i] = Integer.MIN_VALUE / 2;
}
for (int i = 1; i < n; ++i) {
int preHold = hold[0];
hold[0] = Math.max(hold[0], -prices[i]);
for (int j = 1; j <= k; ++j) {
int tmp = hold[j];
hold[j] = Math.max(hold[j], noHold[j] - prices[i]);
noHold[j] = Math.max(noHold[j], preHold + prices[i]);
preHold = tmp;
}
}
return Arrays.stream(noHold).max().getAsInt();
}
}
心之所向,素履以往 生如逆旅,一苇以航

浙公网安备 33010602011771号