Floyd

原文

public class MatrixUDG {
    private int mEdgNum;        // 边的数量
    private char[] mVexs;       // 顶点集合
    private int[][] mMatrix;    // 邻接矩阵
    private static final int INF = Integer.MAX_VALUE;   // 最大值

    ...//省略部分代码

    /**
    * floyd最短路径。
    * 即,统计图中各个顶点间的最短路径。
    * 参数说明:
    * path -- 路径。path[i][j]=k表示,"顶点i"到"顶点j"的最短路径会经过顶点k。
    * dist -- 长度数组。即,dist[i][j]=sum表示,"顶点i"到"顶点j"的最短路径的长度是sum。
    */
    public void floyd(int[][] path, int[][] dist) {

        // 初始化
        for (int i = 0; i < mVexs.length; i++) {
            for (int j = 0; j < mVexs.length; j++) {
                dist[i][j] = mMatrix[i][j];    // "顶点i"到"顶点j"的路径长度为"i到j的权值"。
                path[i][j] = j;                // "顶点i"到"顶点j"的最短路径是经过顶点j。
            }
        }

        // 计算最短路径
        for (int k = 0; k < mVexs.length; k++) {
            for (int i = 0; i < mVexs.length; i++) {
                for (int j = 0; j < mVexs.length; j++) {

                    // 如果经过下标为k顶点路径比原两点间路径更短,则更新dist[i][j]和path[i][j]
                    int tmp = (dist[i][k]==INF || dist[k][j]==INF) ? INF : (dist[i][k] + dist[k][j]);
                    if (dist[i][j] > tmp) {
                        // "i到j最短路径"对应的值设,为更小的一个(即经过k)
                        dist[i][j] = tmp;
                        // "i到j最短路径"对应的路径,经过k
                        path[i][j] = path[i][k];
                    }
                }
            }
        }

        // 打印floyd最短路径的结果
        System.out.printf("floyd: \n");
        for (int i = 0; i < mVexs.length; i++) {
            for (int j = 0; j < mVexs.length; j++)
                System.out.printf("%2d  ", dist[i][j]);
            System.out.printf("\n");
        }
    }
}
posted @ 2021-10-12 10:08  Tianyiya  阅读(98)  评论(0)    收藏  举报