随笔分类 -  数学

哥德尔不完备定理
摘要:在数理逻辑中,哥德尔不完备定理是库尔特·哥德尔于1930年证明并发表的两条定理。哥德尔定理是一阶逻辑的定理,故最终只能在这个框架内理解。 简单地说,第一条定理指出: 任何一个相容的数学形式化理论中,只要它强到足以蕴涵皮亚诺算术公理,就可以在其中构造在体系中既不能证明也不能否证的命题。 这条定理是在数学界以外最著名的定理之一,也是误解最多的定理之一。形式逻辑中有一条定理也同样容易被错误表述。有许多命题听起来很像是哥德尔不完备定理,但事实上是错误的。稍后我们可以看到一些对哥德尔定理的误解。 把第一条定理的证明过程在体系内部形式化后,哥德尔证明了他的第二条定理。该定理指出: 任何相容的形式 阅读全文
posted @ 2012-08-14 21:37 tiankonguse 阅读(1996) 评论(0) 推荐(0)
哥德尔不完备性定理——从数学危机到哲学危机
摘要:一、哥德尔不完备性定理的基本内容 一个普遍公认的事实是,哥德尔不完备性定理在数理逻辑中占有极其重要的地位,是数学与逻辑发展史中的一个里程碑。 哥德尔关于形式系统的不完备性定理,首次发表在他的论文《论数学原理及有关系统中不可判定命题》中。不完备性定理是关于不可判定命题存在的一般结果,如果仅就算术系统而言,这个定理可以简单地表述为: 定理:如果形式算术系统是ω无矛盾的,则存在着这样一个命题,该命题及其否定在该系统中都不能证明,即它是不完备的。 罗塞尔(Rosser)对上面的定理进行了如下改进: 定理:如果形式算术系统是无矛盾的,则它是不完备的。具体说就是—— 定理:如果一个含有自然数论的形式系统S 阅读全文
posted @ 2012-08-14 20:33 tiankonguse 阅读(2859) 评论(0) 推荐(0)
Erlangen纲领——几何学
摘要:Erlangen纲领——几何学“非欧几何” 的发现是19世纪最大的数学进展之一. 主要的先驱人物是俄国的罗巴切夫斯基, 匈牙利的鲍耶, 和德国的高斯. 非欧几何的故事已经流传很广了, 它与欧氏几何的不同就在于所谓欧氏平行公理: 过直线外一点有且只有一条直线与已知直线平行. 如果把这条公理改成 “过直线外一点有两条以上的直线与已知直线平行”, 而保持其它公理不变, 就得到一种新的几何, 称为非欧几何. 关于非欧几何的文章发表于 1830 年左右. 有迹象表明高斯在早些年就得到了一些结果. 然而非欧几何这个名称在 1854 年黎曼的就职演讲发表以后含义就不够精确了(因为黎曼提供了无穷多种“非欧”的 阅读全文
posted @ 2012-08-14 19:03 tiankonguse 阅读(634) 评论(0) 推荐(0)
数学史上的3次危机
摘要:无理数的发现──第一次数学危机大约公元前5世纪,不可通约量的发现导致了毕达哥拉斯悖论。当时的毕达哥拉斯学派重视自然及社会中不变因素的研究,把几何、算术、天文、音乐称为"四艺",在其中追求宇宙的和谐规律性。他们认为:宇宙间一切事物都可归结为整数或整数之比,毕达哥拉斯学派的一项重大贡献是证明了勾股定理,但由此也发现了一些直角三角形的斜边不能表示成整数或整数之比(不可通约)的情形,如直角边长均为1的直角三角形就是如此。这一悖论直接触犯了毕氏学派的根本信条,导致了当时认识上的"危机",从而产生了第一次数学危机。到了公元前370年,这个矛盾被毕氏学派的欧多克斯通过 阅读全文
posted @ 2012-08-14 17:23 tiankonguse 阅读(387) 评论(0) 推荐(0)