摘要:
PCA (Principal Component Analysis) 主成份分析 也称为卡尔胡宁-勒夫变换(Karhunen-Loeve Transform),是一种用于探索高维数据结构的技术。PCA通常用于高维数据集的探索与可视化。还可以用于数据压缩,数据预处理等。PCA可以把可能具有相关性的高维 阅读全文
posted @ 2017-08-21 23:46 天戈朱 阅读(1387) 评论(0) 推荐(0)
|
摘要:
PCA (Principal Component Analysis) 主成份分析 也称为卡尔胡宁-勒夫变换(Karhunen-Loeve Transform),是一种用于探索高维数据结构的技术。PCA通常用于高维数据集的探索与可视化。还可以用于数据压缩,数据预处理等。PCA可以把可能具有相关性的高维 阅读全文
posted @ 2017-08-21 23:46 天戈朱 阅读(1387) 评论(0) 推荐(0)
摘要:
机器学习领域中所谓的降维就是指采用某种映射方法,将原高维空间中的数据点映射到低维度的空间中。降维的本质是学习一个映射函数 f : x->y,其中x是原始数据点的表达, y是数据点映射后的低维向量表达,通常y的维度小于x的维度(当然提高维度也是可以的)。f可能是显式的或隐式的、线性的或非线性的。使用降 阅读全文
posted @ 2017-08-21 23:45 天戈朱 阅读(1340) 评论(0) 推荐(0) |
||