多路复用

IO多路复用

阻塞 IO

服务端为了处理客户端的连接和请求的数据,写了如下代码。

listenfd = socket();   // 打开一个网络通信端口
bind(listenfd);        // 绑定
listen(listenfd);      // 监听
while(1) {
  connfd = accept(listenfd);  // 阻塞建立连接
  int n = read(connfd, buf);  // 阻塞读数据
  doSomeThing(buf);  // 利用读到的数据做些什么
  close(connfd);     // 关闭连接,循环等待下一个连接
}

这段代码会执行得磕磕绊绊,就像这样。

image

可以看到,服务端的线程阻塞在了两个地方,一个是 accept 函数,一个是 read 函数。

如果再把 read 函数的细节展开,我们会发现其阻塞在了两个阶段。

image

这就是传统的阻塞 IO。

整体流程如下图。

image

所以,如果这个连接的客户端一直不发数据,那么服务端线程将会一直阻塞在 read 函数上不返回,也无法接受其他客户端连接。

这肯定是不行的。

非阻塞 IO

为了解决上面的问题,其关键在于改造这个 read 函数。

有一种聪明的办法是,每次都创建一个新的进程或线程,去调用 read 函数,并做业务处理。

while(1) {
  connfd = accept(listenfd);  // 阻塞建立连接
  pthread_create(doWork);  // 创建一个新的线程
}
void doWork() {
  int n = read(connfd, buf);  // 阻塞读数据
  doSomeThing(buf);  // 利用读到的数据做些什么
  close(connfd);     // 关闭连接,循环等待下一个连接
}

这样,当给一个客户端建立好连接后,就可以立刻等待新的客户端连接,而不用阻塞在原客户端的 read 请求上。

image

不过,这不叫非阻塞 IO,只不过用了多线程的手段使得主线程没有卡在 read 函数上不往下走罢了。操作系统为我们提供的 read 函数仍然是阻塞的。

所以真正的非阻塞 IO,不能是通过我们用户层的小把戏,而是要恳请操作系统为我们提供一个非阻塞的 read 函数

这个 read 函数的效果是,如果没有数据到达时(到达网卡并拷贝到了内核缓冲区),立刻返回一个错误值(-1),而不是阻塞地等待。

操作系统提供了这样的功能,只需要在调用 read 前,将文件描述符设置为非阻塞即可。

fcntl(connfd, F_SETFL, O_NONBLOCK);
int n = read(connfd, buffer) != SUCCESS);

这样,就需要用户线程循环调用 read,直到返回值不为 -1,再开始处理业务。

image

这里我们注意到一个细节。

非阻塞的 read,指的是在数据到达前,即数据还未到达网卡,或者到达网卡但还没有拷贝到内核缓冲区之前,这个阶段是非阻塞的。

当数据已到达内核缓冲区,此时调用 read 函数仍然是阻塞的,需要等待数据从内核缓冲区拷贝到用户缓冲区,才能返回。

整体流程如下图

image

IO 多路复用

为每个客户端创建一个线程,服务器端的线程资源很容易被耗光。

image

当然还有个聪明的办法,我们可以每 accept 一个客户端连接后,将这个文件描述符(connfd)放到一个数组里。

fdlist.add(connfd);

然后弄一个新的线程去不断遍历这个数组,调用每一个元素的非阻塞 read 方法。

while(1) {
  for(fd <-- fdlist) {
    if(read(fd) != -1) {
      doSomeThing();
    }
  }
}

这样,我们就成功用一个线程处理了多个客户端连接。

image

你是不是觉得这有些多路复用的意思?

但这和我们用多线程去将阻塞 IO 改造成看起来是非阻塞 IO 一样,这种遍历方式也只是我们用户自己想出的小把戏,每次遍历遇到 read 返回 -1 时仍然是一次浪费资源的系统调用。

在 while 循环里做系统调用,就好比你做分布式项目时在 while 里做 rpc 请求一样,是不划算的。

所以,还是得恳请操作系统老大,提供给我们一个有这样效果的函数,我们将一批文件描述符通过一次系统调用传给内核,由内核层去遍历,才能真正解决这个问题。

select

select 是操作系统提供的系统调用函数,通过它,我们可以把一个文件描述符的数组发给操作系统, 让操作系统去遍历,确定哪个文件描述符可以读写, 然后告诉我们去处理:

image

select系统调用的函数定义如下。

int select(
    int nfds,
    fd_set *readfds,
    fd_set *writefds,
    fd_set *exceptfds,
    struct timeval *timeout);
// nfds:监控的文件描述符集里最大文件描述符加1
// readfds:监控有读数据到达文件描述符集合,传入传出参数
// writefds:监控写数据到达文件描述符集合,传入传出参数
// exceptfds:监控异常发生达文件描述符集合, 传入传出参数
// timeout:定时阻塞监控时间,3种情况
//  1.NULL,永远等下去
//  2.设置timeval,等待固定时间
//  3.设置timeval里时间均为0,检查描述字后立即返回,轮询

服务端代码,这样来写。

首先一个线程不断接受客户端连接,并把 socket 文件描述符放到一个 list 里。

while(1) {
  connfd = accept(listenfd);
  fcntl(connfd, F_SETFL, O_NONBLOCK);
  fdlist.add(connfd);
}

然后,另一个线程不再自己遍历,而是调用 select,将这批文件描述符 list 交给操作系统去遍历。

while(1) {
  // 把一堆文件描述符 list 传给 select 函数
  // 有已就绪的文件描述符就返回,nready 表示有多少个就绪的
  nready = select(list);
  ...
}

不过,当 select 函数返回后,用户依然需要遍历刚刚提交给操作系统的 list。

只不过,操作系统会将准备就绪的文件描述符做上标识,用户层将不会再有无意义的系统调用开销。

while(1) {
  nready = select(list);
  // 用户层依然要遍历,只不过少了很多无效的系统调用
  for(fd <-- fdlist) {
    if(fd != -1) {
      // 只读已就绪的文件描述符
      read(fd, buf);
      // 总共只有 nready 个已就绪描述符,不用过多遍历
      if(--nready == 0) break;
    }
  }
}

正如刚刚的动图中所描述的,其直观效果如下。(同一个动图消耗了你两次流量,气不气?)

image

可以看出几个细节:

  1. select 调用需要传入 fd 数组,需要拷贝一份到内核,高并发场景下这样的拷贝消耗的资源是惊人的。(可优化为不复制)

  2. select 在内核层仍然是通过遍历的方式检查文件描述符的就绪状态,是个同步过程,只不过无系统调用切换上下文的开销。(内核层可优化为异步事件通知)

  3. select 仅仅返回可读文件描述符的个数,具体哪个可读还是要用户自己遍历。(可优化为只返回给用户就绪的文件描述符,无需用户做无效的遍历)

整个 select 的流程图如下。

image

可以看到,这种方式,既做到了一个线程处理多个客户端连接(文件描述符),又减少了系统调用的开销(多个文件描述符只有一次 select 的系统调用 + n 次就绪状态的文件描述符的 read 系统调用)。

poll

poll 也是操作系统提供的系统调用函数。

int poll(struct pollfd *fds, nfds_tnfds, int timeout);

struct pollfd {
  intfd; /*文件描述符*/
  shortevents; /*监控的事件*/
  shortrevents; /*监控事件中满足条件返回的事件*/
};

它和 select 的主要区别就是,去掉了 select 只能监听 1024 个文件描述符的限制。

epoll

epoll 是最终的大 boss,它解决了 select 和 poll 的一些问题。

还记得上面说的 select 的三个细节么?

  1. select 调用需要传入 fd 数组,需要拷贝一份到内核,高并发场景下这样的拷贝消耗的资源是惊人的。(可优化为不复制)

  2. select 在内核层仍然是通过遍历的方式检查文件描述符的就绪状态,是个同步过程,只不过无系统调用切换上下文的开销。(内核层可优化为异步事件通知)

  3. select 仅仅返回可读文件描述符的个数,具体哪个可读还是要用户自己遍历。(可优化为只返回给用户就绪的文件描述符,无需用户做无效的遍历)

所以 epoll 主要就是针对这三点进行了改进。

  1. 内核中保存一份文件描述符集合,无需用户每次都重新传入,只需告诉内核修改的部分即可。

  2. 内核不再通过轮询的方式找到就绪的文件描述符,而是通过异步 IO 事件唤醒。

  3. 内核仅会将有 IO 事件的文件描述符返回给用户,用户也无需遍历整个文件描述符集合。

具体,操作系统提供了这三个函数。

第一步,创建一个 epoll 句柄

int epoll_create(int size);

第二步,向内核添加、修改或删除要监控的文件描述符。

int epoll_ctl(
  int epfd, int op, int fd, struct epoll_event *event);

第三步,类似发起了 select() 调用

int epoll_wait(
  int epfd, struct epoll_event *events, int max events, int timeout);

使用起来,其内部原理就像如下一般丝滑。

image

如果你想继续深入了解 epoll 的底层原理,推荐阅读飞哥的《图解 | 深入揭秘 epoll 是如何实现 IO 多路复用的!》,从 linux 源码级别,一行一行非常硬核地解读 epoll 的实现原理,且配有大量方便理解的图片,非常适合源码控的小伙伴阅读。

python select

server

# coding: utf-8
import select
import socket
import Queue
from time import sleep


# Create a TCP/IP
server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
server.setblocking(False)

# Bind the socket to the port
server_address = ('localhost', 8090)
print ('starting up on %s port %s' % server_address)
server.bind(server_address)

# Listen for incoming connections
server.listen(5)

# Sockets from which we expect to read
inputs = [server]

# Sockets to which we expect to write
# 处理要发送的消息
outputs = []

# Outgoing message queues (socket: Queue)
message_queues = {}

while inputs:
    # Wait for at least one of the sockets to be ready for processing
    print ('waiting for the next event')
    # 开始select 监听, 对input_list 中的服务器端server 进行监听
    # 一旦调用socket的send, recv函数,将会再次调用此模块
    readable, writable, exceptional = select.select(inputs, outputs, inputs)

    # Handle inputs
    # 循环判断是否有客户端连接进来, 当有客户端连接进来时select 将触发
    for s in readable:
        # 判断当前触发的是不是服务端对象, 当触发的对象是服务端对象时,说明有新客户端连接进来了
        # 表示有新用户来连接
        if s is server:
            # A "readable" socket is ready to accept a connection
            connection, client_address = s.accept()
            print ('connection from', client_address)
            # this is connection not server
            connection.setblocking(0)
            # 将客户端对象也加入到监听的列表中, 当客户端发送消息时 select 将触发
            inputs.append(connection)

            # Give the connection a queue for data we want to send
            # 为连接的客户端单独创建一个消息队列,用来保存客户端发送的消息
            message_queues[connection] = Queue.Queue()
        else:
            # 有老用户发消息, 处理接受
            # 由于客户端连接进来时服务端接收客户端连接请求,将客户端加入到了监听列表中(input_list), 客户端发送消息将触发
            # 所以判断是否是客户端对象触发
            data = s.recv(1024)
            # 客户端未断开
            if data != '':
                # A readable client socket has data
                print ('received "%s" from %s' % (data, s.getpeername()))
                # 将收到的消息放入到相对应的socket客户端的消息队列中
                message_queues[s].put(data)
                # Add output channel for response
                # 将需要进行回复操作socket放到output 列表中, 让select监听
                if s not in outputs:
                    outputs.append(s)
            else:
                # 客户端断开了连接, 将客户端的监听从input列表中移除
                # Interpret empty result as closed connection
                print ('closing', client_address)
                # Stop listening for input on the connection
                if s in outputs:
                    outputs.remove(s)
                inputs.remove(s)
                s.close()

                # Remove message queue
                # 移除对应socket客户端对象的消息队列
                del message_queues[s]

    # Handle outputs
    # 如果现在没有客户端请求, 也没有客户端发送消息时, 开始对发送消息列表进行处理, 是否需要发送消息
    # 存储哪个客户端发送过消息
    for s in writable:
        try:
            # 如果消息队列中有消息,从消息队列中获取要发送的消息
            message_queue = message_queues.get(s)
            send_data = ''
            if message_queue is not None:
                send_data = message_queue.get_nowait()
            else:
                # 客户端连接断开了
                print "has closed "
        except Queue.Empty:
            # 客户端连接断开了
            print "%s" % (s.getpeername())
            outputs.remove(s)
        else:
            # print "sending %s to %s " % (send_data, s.getpeername)
            # print "send something"
            if message_queue is not None:
                s.send(send_data)
            else:
                print "has closed "
            # del message_queues[s]
            # writable.remove(s)
            # print "Client %s disconnected" % (client_address)

    # # Handle "exceptional conditions"
    # 处理异常的情况
    for s in exceptional:
        print ('exception condition on', s.getpeername())
        # Stop listening for input on the connection
        inputs.remove(s)
        if s in outputs:
            outputs.remove(s)
        s.close()

        # Remove message queue
        del message_queues[s]

    sleep(1)

client

# coding: utf-8
import socket


messages = ['This is the message ', 'It will be sent ', 'in parts ', ]

server_address = ('localhost', 8090)

# Create aTCP/IP socket

socks = [socket.socket(socket.AF_INET, socket.SOCK_STREAM), socket.socket(socket.AF_INET,  socket.SOCK_STREAM), ]

# Connect thesocket to the port where the server is listening

print ('connecting to %s port %s' % server_address)
# 连接到服务器
for s in socks:
    s.connect(server_address)

for index, message in enumerate(messages):
    # Send messages on both sockets
    for s in socks:
        print ('%s: sending "%s"' % (s.getsockname(), message + str(index)))
        s.send(bytes(message + str(index)).decode('utf-8'))
    # Read responses on both sockets

for s in socks:
    data = s.recv(1024)
    print ('%s: received "%s"' % (s.getsockname(), data))
    if data != "":
        print ('closingsocket', s.getsockname())
        s.close()
致谢
  1. http://pymotw.com/2/select/#poll
  2. https://mp.weixin.qq.com/s/YdIdoZ_yusVWza1PU7lWaw
posted @ 2022-03-17 20:41  TY520  阅读(151)  评论(0编辑  收藏  举报