• 博客园logo
  • 会员
  • 众包
  • 新闻
  • 博问
  • 闪存
  • 赞助商
  • HarmonyOS
  • Chat2DB
    • 搜索
      所有博客
    • 搜索
      当前博客
  • 写随笔 我的博客 短消息 简洁模式
    用户头像
    我的博客 我的园子 账号设置 会员中心 简洁模式 ... 退出登录
    注册 登录
 






天涯未抵

 
 

Powered by 博客园
博客园 | 首页 | 新随笔 | 联系 | 订阅 订阅 | 管理

2020年1月3日

机器学习(6)之聚类算法(k-means\Canopy\层次聚类\谱聚类)
摘要: @[toc] 1 聚类的定义 聚类就是对大量未知标注的数据集,按照数据 内部存在的数据特征 将数据集划分为多个不同的类别,使类别内的数据比较相似,类别之间的数据相似度比较小;属于 无监督学习 。 聚类算法的重点是计算样本项之间的 相似度 ,有时候也称为样本间的 距离 。 和分类算法的区别: 分类算法 阅读全文
posted @ 2020-01-03 23:32 天涯未抵 阅读(1525) 评论(0) 推荐(0)
 
机器学习(5)之集成学习(RF\AdaBoost\GBDT)
摘要: [toc] 1 集成学习的思想 集成学习的思想是将若干个学习器(分类器&回归器)组合之后产生一个新学习器。弱分类器(weak learner)指那些分类准确率只稍微好于随机猜测的分类器(errorrate < 0.5)。 集成算法的成功在于保证弱分类器的多样性(Diversity)。而且集成不稳定的 阅读全文
posted @ 2020-01-03 12:28 天涯未抵 阅读(827) 评论(0) 推荐(0)