导航

用户运营之如何在大数据中找到你需要的用户

Posted on 2017-07-19 14:05  陶源居室  阅读(167)  评论(0)    收藏  举报

我们对商业用户的分类耳熟能详的大概有几种:高端用户和低端用户、学生、白领等,区域划分的有一线、二线、三线、四线城市用户;对线上来说有会员、非会员、钻石会员、活跃和不活跃用户、初中高级用户等,这些用户分类大多数都是从一个或者两个维度进行划分的,比如qq来说,大多数人都是普通免费用户,也有黄钻、红钻用户,这里面同时也存在学生、白领等用户属性。任何一款产品的用户分类方法基本都可以适用,但是如何去实际应用呢?

先来说下如何判断某一款产品的用户分类效果如何,主要从两个角度进行判断:分类的信度和效度,也就是分类的准确性和精确性。分类的准确性是指分完类后,是不是现实中每一个用户都能定位到反映该用户的类别,也就是说任何一个用户都能给他贴上属于某个类别的标签;而分类的精确性是指得到的用户类别在多大程度上反映了实际用户所包含的属性含义,也就是说用来描述各类别用户的特征信息与实际用户所有属性的吻合程度。在实际分类中准确性和精确性往往不能同时达到完美,当你追求100%的准确性时精度肯定会下降,比如只用性别去划分用户,准确度很高但是精度不够,所以在实际用户分类时找到准确性和精确性的一个平衡点,达到自己分类目的即可。

又回到前面提到的把用户划分为初级用户、普通用户、高级用户,这种划分的方法是准确性很高,但是精确度不够,每一个用户都能根据实际情况判断为初级用户、普通用户还是高级用户,但是描述用户的特征信息很少只有操作频率和计算机技能水平两个维度。这是很不精确的,在实际情况中,用户的特征信息是包含很多,用户间任何一个特征因素不同都会导致不同用户使用某个产品的行为习惯偏好等的不同。比如用户的年龄、性别、学历、收入水平、计算机水平、职业、地域、网龄以及使用某个产品的目标等因素都会导致不同用户不同的使用习惯和偏好。所以在用户分类时需要从多个维度的特征因素去考虑如何划分用户。

实际该如何操作

首先考虑对某个产品进行用户分类时需要哪些特征因素,也就是从哪几个维度去划分用户。一般会从以下几个维度去考虑:用户的人口学信息,用户的计算机背景(包括用户的互联网使用背景),上网地点,收入水平,职业,地域,用户对于该产品的一些使用经验和偏好,使用过哪些同类产品,使用的目的是什么,认为哪款最好用,影响选择某款产品的因素有哪些,通过哪种途径得知的,使用产品的态度,使用产品的具体行为等因素。那具体到某个产品时应该选择哪几个因素去划分用户呢,解决的方法是先把所有维度都列出来,然后针对这些维度进行用户访谈,通过访谈能够得到大概的用户间的共同点和不同点。然后把所有因素转化成问卷题目,通过科学抽样的问卷调查得到用户调查数据。对这些用户数据进性行聚类分析即可得到您所需要的用户分类。

用户的聚类分析

聚类分析中有很多因素影响着最后的用户分类结果,影响较大的因素有:聚类方法选择,距离算法选择,聚类变量选择,用户类数选择。对于聚类方法和距离选择,我倾向于推荐选择两步聚类法和对数似然值距离算法,因为用户的人口学特征和使用某产品行为偏好等特征一般都是分类变量,用欧氏距离算法的话,它的距离公式所表示的含义很难用实际意义去描述,或者说它的距离值在现实中是没有实际意思的。聚类变量的话可以选择访谈得到差别较大的特征因素,但是这些变量之间也是有关系的,具体还要通过不断的尝试去调整,主要看去掉某个变量后聚类结果是否有大得差异,如果有该变量则为重要变量,用户类数确定可以结合实际聚类得到的描述性判断因素和访谈等得到的实际情况共同确定。

怎么对用户分类,细分到何等程度,不太会有一个模式或者方法来通用。所以涉及到某个具体产品的用户分类时,首先明确你得分类目的,分完类之后你需要面怎么利用这些类。当能够从用户分类中得到明确的产品用户群和产品定位时,说明该分类就基本有效了。