62. Unique Paths
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
方法1 DP(动态规划)
因为只有两个方向,所以每个点其实只是上面点路径数和左边点路径数的和,当然要判断下数组越界。
1 public class Solution { 2 public int uniquePaths(int m, int n) { 3 int[][] path=new int[m][n]; 4 path[0][0]=1; 5 for(int i=0;i<m;i++){ 6 for(int j=0; j<n;j++){ 7 if(i-1>=0){ 8 path[i][j] += path[i-1][j]; 9 } 10 if(j-1>=0){ 11 path[i][j] += path[i][j-1]; 12 } 13 } 14 } 15 return path[m-1][n-1]; 16 } 17 }
方法2 DFS(深度优先遍历)
一看地图问题,想到用深度优先,遍历每一个位置都只有两个选择,向下和向右,发现走到头返回。
public class Solution { public static int uniquePaths_helper(int mm, int nn,int m,int n,int sum) { if (mm==m-1&&nn==n-1){ sum++; return sum; } if (mm<0||mm>=m){ return sum; } if (nn<0||nn>=n){ return sum; } int sum1=uniquePaths_helper(mm+1,nn,m,n,sum); return uniquePaths_helper(mm,nn+1,m,n,sum1); } public static int uniquePaths(int m, int n) { return uniquePaths_helper(0,0,m,n,0); } }