无约束条件的最优控制问题

设函数 \(x(t)\)\([t_0, t_f]\) 区间上连续可到,考虑 Lagrange型性能指标函数 \(J[x(t)]=\displaystyle\int_{t_0}^{t_f}L[x(t), \dot{x}(t), t]dt\)

终端时刻确定的性能指标变分

此时终端时刻 \(t_f\) 是一个确定的数,积分型的性能指标相当于是一个确定上下限的定积分。设宗量函数 \(x(t)\), \(\dot{x}(t)\) 在极值曲线 \(x^*(t)\), \(\dot{x}^*(t)\) 附近发生微小变分 \(\delta \eta(t)\), \(\delta \dot{\eta}(t)\), 其中 \(\eta(t)\) 是一个连续可导的任意定义区间内的函数,即

\[x(t)=x^*(t)+\delta \eta(t),\tag{1} \]

\[\dot{x}(t)=\dot{x}^*(t)+\delta \dot{\eta}(t),\tag{2} \]

则泛函 \(J[x(t)]\) 的增量 \(\Delta J[x(t)]\) 可表示为

\[\begin{aligned} \Delta J[x(t)]&=\displaystyle\int_{t_0}^{t_f}\{L[x(t), \dot{x}(t),t]-L[x^*(t), \dot{x}^*(t),t]\}dt\\ &=\displaystyle\int_{t_0}^{t_f}\{\frac{\partial L}{\partial x}\delta \eta+\frac{\partial L}{\partial \dot{x}}\delta \dot{\eta}+o[(\delta \eta)^2, (\delta \dot{\eta})^2]\}dt \end{aligned} \]

其中

\[\begin{aligned} \displaystyle\int_{t_0}^{t_f}\frac{\partial L}{\partial \dot{x}}\delta \dot{\eta}dt=\frac{\partial L}{\partial \dot{x}}\delta \eta|_{t_0}^{t_f}-\displaystyle\int_{t_0}^{t_f}\frac{d}{dt}(\frac{\partial L}{\partial \dot{x}})\delta \eta dt \end{aligned},\]

所以

\[\delta J=\displaystyle\int_{t_0}^{t_f}(\frac{\partial L}{\partial x}-\frac{d}{dt}(\frac{\partial L}{\partial \dot{x}}))\delta \eta dt+\frac{\partial L}{\partial \dot{x}}\delta \eta|_{t_0}^{t_f}.\tag{3} \]

由泛函极值的必要条件可得,若泛函\(J[x(t)]\) 取得极值,则有\(\delta J=0\), 根据(3)式,若要\(\delta J=0\),则有

\[\frac{\partial L}{\partial x}-\frac{d}{dt}(\frac{\partial L}{\partial \dot{x}})=0,\tag{4} \]

以及

\[\frac{\partial L}{\partial \dot{x}}\delta \eta|_{t_0}^{t_f}=0,\tag{5} \]

上式公式 (4) 称为欧拉-拉格朗日方程, 公式(5)被称为横截条件。
始端,终端状态的固定与否对公式(4)无影响,但会影响公式(5)的具体表达形式,以下分如下四种情况分析模型的边界条件。

1. 始端状态,终端状态固定

此时初始状态 \(x(t_0)=x_0\), \(x(t_f)=x_f\)。则\(\eta(t)|_{t_0}^{t_f}=0\)。则求解时应用给定的边界条件即可,无须横截条件。

2. 始端状态给定,终端状态自由

此时初始状态 \(x(t_0)=x_0\)\(\eta(t_0)=0\). 由\(\eta(t)\) 的任意性, 此时需要 \(\frac{\partial L}{\partial \dot{x}}|_{t_f}=0\)

3. 始端状态自由,终端状态给定

此时终端状态 \(x(t_f)=x_f\)\(\eta(t_f)=0\). 由\(\eta(t)\) 的任意性, 需要 \(\frac{\partial L}{\partial \dot{x}}|_{t_0}=0\)

4. 始端状态自由,终端状态自由

此时对于任意的\(\eta(t)\), 在\(t_0\), \(t_f\)两点的取值不定,由\(\eta(t)\) 的任意性, 需要 \(\frac{\partial L}{\partial \dot{x}}|_{t_0}=0\)\(\frac{\partial L}{\partial \dot{x}}|_{t_f}=0\)

总结:求解无约束条件的泛函极值问题时,若给定了边界条件,则直接应用边界条件,若始端或终端状态的条件未给出,则需要使用始端或终端的横截条件进行求解。求解条件如下表所示:

边界条件 满足方程:欧拉-拉格朗日方程
始端固定,终端固定 \(x(t_0)=x_0, x(t_f)=x_{t_f}\) \(\frac{\partial L}{\partial x}-\frac{d}{dt}(\frac{\partial L}{\partial \dot{x}})=0\)
始端固定,终端自由 \(x(t_0)=x_0,\frac{\partial L}{\partial \dot{x}}|_{t_f}=0\) \(\frac{\partial L}{\partial x}-\frac{d}{dt}(\frac{\partial L}{\partial \dot{x}})=0\)
始端自由,终端固定 \(\frac{\partial L}{\partial \dot{x}}|_{t_0}=0, x(t_f)=x_f\) \(\frac{\partial L}{\partial x}-\frac{d}{dt}(\frac{\partial L}{\partial \dot{x}})=0\)
始端自由,终端自由 \(\frac{\partial L}{\partial \dot{x}}|_{t_0}=0,\frac{\partial L}{\partial \dot{x}}|_{t_f}=0\) \(\frac{\partial L}{\partial x}-\frac{d}{dt}(\frac{\partial L}{\partial \dot{x}})=0\)

例题

  • 初始与终端状态固定
    求通过点 \((0,0)\), \((1,1)\) 且使

\[J=\displaystyle \int_0^1(x^2+\dot{x}^2)dt \]

取极值的最优轨迹。
:此处 \(L(x(t), \dot{x}(t), t)=x^2+\dot{x}^2\), 性能指标函数相应的欧拉-拉格朗日方程为

\[\frac{\partial L}{\partial x}-\frac{d}{dt}(\frac{\partial L}{\partial \dot{x}})=0. \]

则有

\[2x-2\frac{d}{dt}(\dot{x})=0, \]

\[x-\ddot{x}=0. \]

故求得基解为 \(e^t\), \(e^{-t}\), 则最优轨迹的通解可表示为

\[x(t)=c_1e^t+c_2e^{-t},\tag{10} \]

其中 \(c_1\)\(c_2\) 都为常数。
将初始条件 \(x(0)=0\) 与终端条件 \(x(1)=1\) 代入方程 (10) 可得:

\[c_1=\frac{1}{e-e^{-1}},c_2=\frac{1}{e^{-1}-e}, \]

故而最优轨迹为

\[x(t)=\frac{e^t-e^{-t}}{e-e^{-1}}. \]

  • 终端状态不固定
    求使得性能指标

\[J=\displaystyle \int_0^1(\dot{x}^2+\dot{x}^3)dt \]

取极值的轨迹 \(x^*(t)\), 并要求 \(x^*(0)=0\), 但对 \(x^*(1)\) 没有限制。
解: 此处始端状态给定,终端状态未给定,所以需要用到始端状态相关的边界条件,终端状态相关的横截条件。这里 \(L(x(t), \dot{x}(t), t)=\dot{x}^2+\dot{x}^3\),该性质指标函数对应的欧拉-拉格朗日函数为

\[-\frac{d}{dt}(2\dot{x}+3\dot{x}^2)=0,\tag{11} \]

以及横截条件

\[(2\dot{x}+3\dot{x}^2)_{t=1}=0.\tag{12} \]

由方程 (11) 可知,\(2\dot{x}+3\dot{x}^2=常数\),则可知 \(x^*(t)\) 为关于 \(t\) 的一次函数,设 \(x^*(t)=at+b\), 则由 \(x^*(0)=0\) 可知 \(b=0\)。由方程(12)可知 $$2a+3a^2=0,\tag{13}$$
解得 \(a=0\)\(a=-\frac{2}{3}\),所以最优轨迹 \(x^*(t)\) 可表示为:
(i) 若 \(a=0\),则 \(x^*(t)=0\);
(ii) 若 \(a=-\frac{2}{3}\),则 \(x^*(t)=-\frac{2}{3}t\).

终端时刻不确定的性能指标变分

此时性能指标函数 \(J[x(t)]=\displaystyle\int_{t_0}^{t_f}L[x(t), \dot{x}(t), t]dt\) 类似于一个变上限的积分函数。
类似于终端时刻确定时,设宗量函数 \(x(t)\), \(\dot{x}(t)\) 在极值曲线 \(x^*(t)\), \(\dot{x}^*(t)\) 附近发生微小变分 \(\delta \eta(t)\), \(\delta \dot{\eta}(t)\), 其中 \(\eta(t)\) 是一个连续可导的任意定义区间内的函数,即

\[x(t)=x^*(t)+\delta \eta(t),\tag{14} \]

\[\dot{x}(t)=\dot{x}^*(t)+\delta \dot{\eta}(t),\tag{15} \]

取得状态 \(x^*\) 的时刻为 \(t_f^*\), 状态 \(x(t)\) 对应 时刻 \(t_f\), 设 \(t_f=t_f^*+\delta\xi(t_f^*)\)
则泛函 \(J[x(t)]\) 的增量 \(\Delta J[x^*(t)]\) 可表示为

\[\begin{aligned} \Delta J[x^*(t)]&=\frac{\partial J}{\partial \delta}|_{\delta=0}\\ &=\displaystyle\int_{t_0}^{t_f^*}\{L[x(t), \dot{x}(t),t]-L[x^*(t), \dot{x}^*(t),t]\}dt+L[x^*(t_f^*), \dot{x}^*(t_f^*),t_f^*]\xi(t_f^*)\\ &=\displaystyle\int_{t_0}^{t_f^*}\{\frac{\partial L}{\partial x}\delta \eta+\frac{\partial L}{\partial \dot{x}}\delta \dot{\eta}+o[(\delta \eta)^2, (\delta \dot{\eta})^2]\}dt+L[x^*(t_f^*), \dot{x}^*(t_f^*),t_f^*]\xi(t_f^*) \end{aligned} \]

其中

\[\begin{aligned} \displaystyle\int_{t_0}^{t_f^*}\frac{\partial L}{\partial \dot{x}}\delta \dot{\eta}dt=\frac{\partial L}{\partial \dot{x}}\delta \eta|_{t_0}^{t_f^*}-\displaystyle\int_{t_0}^{t_f^*}\frac{d}{dt}(\frac{\partial L}{\partial \dot{x}})\delta \eta dt \end{aligned}.\]

因此 \(\delta J\) 取得极值的必要条件为:
(1)欧拉-拉格朗日方程:

\[\frac{\partial L}{\partial x}-\frac{d}{dt}(\frac{\partial L}{\partial \dot{x}})=0, \]

(2) 横截条件:

\[\eta(t)\frac{\partial L}{\partial \dot{x}}|_{t_0}^{t_f^*}+L[x^*(t_f^*), \dot{x}^*(t_f^*),t_f^*]\xi(t_f^*)=0. \]

通常,无论边界情况如何,泛函极值都必须满足欧拉-拉格朗日方程,只是在不同的情况下会出现不同的边界情况,以下我们分情况进行讨论。

  1. 给定始端状态与终端状态
    在这里插入图片描述
    此时 \(x(t_0)=x_0\), \(\eta(t_0)=0\), \(\eta(t_f^*)=0\), \(x(t_f)=x_f\), 则可得边界条件与横截条件为

\[x(t_0)=x_0, x(t_f)=x_f, L[x(t_f^*), \dot{x}(t_f^*), t_f^*]=0. \]

  1. 始端状态给定,终端状态自由在这里插入图片描述
    此时 \(x(t_0)=x_0\), \(\eta(t_0)=0\), \(\eta(t_f^*)\neq0\), 则可得边界条件与横截条件为

\[x(t_0)=x_0, \frac{\partial L}{\partial \dot{x}}|_{t_f^*}=0, L[x(t_f^*), \dot{x}(t_f^*), t_f^*]=0. \]

  1. 始端状态给定,终端状态有约束(要求 \(x(t_f)=C(t_f)\)
    在这里插入图片描述
    \(x(t)=x^*(t)+\varepsilon\eta(t)\), \(t_f=t_f^*+\varepsilon\xi(t_f^*)\)
    则有

\[\begin{aligned} C(t_f)&=x(t_f)\\ &=x^*(t_f)+\varepsilon\eta(t_f)\\ &=x(t_f^*+\varepsilon\xi(t_f^*))\\ &=x^*(t_f^*+\varepsilon\xi(t_f^*))+\varepsilon\eta(t_f^*+\varepsilon\xi(t_f^*))\\ &=C(t_f^*+\varepsilon\xi(t_f^*))\\ \end{aligned} \]

上式在 \(\varepsilon=0\) 处取求导可得

\[\begin{aligned} &\eta(t_f^*+\varepsilon\xi(t_f^*))|_{\varepsilon=0}\\ &=\frac{C(t_f^*+\varepsilon\xi(t_f^*))-x^*(t_f^*+\varepsilon\xi(t_f^*))}{\varepsilon}|_{\varepsilon=0}\\ &=(\dot{C}(t_f^*)-\dot{x}^*(t_f^*))\xi(t_f^*)\\ &=\eta(t_f^*) \end{aligned} \]

则可得边界条件与横截条件为

\[\begin{cases} x(t_0)=x_0,\\ x(t_f)=C(t_f),\\ (\dot{C}(t_f^*)-\dot{x}^*(t_f^*))\frac{\partial L}{\partial \dot{x}}|_{t_f^*}+L[x^*(t_f^*), \dot{x}^*(t_f^*),t_f^*]=0.\\ \end{cases} \]

  1. 始端状态有约束(要求 \(x(t_0)=\Phi(t_0)\)),终端状态固定
    在这里插入图片描述

\(x(t)=x^*(t)+\varepsilon\eta(t)\), \(t_0=t_0^*+\varepsilon\xi(t_0^*)\)
则有

\[\begin{aligned} \Phi(t_0)&=x(t_0)\\ &=x^*(t_0)+\varepsilon\eta(t_0)\\ &=x(t_0^*+\varepsilon\xi(t_0^*))\\ &=x^*(t_0^*+\varepsilon\xi(t_0^*))+\varepsilon\eta(t_0^*+\varepsilon\xi(t_0^*))\\ &=C(t_0^*+\varepsilon\xi(t_0^*))\\ \end{aligned} \]

上式在 \(\varepsilon=0\) 处取求导可得

\[\begin{aligned} &\eta(t_0^*+\varepsilon\xi(t_0^*))|_{\varepsilon=0}\\ &=\frac{C(t_0^*+\varepsilon\xi(t_0^*))-x^*(t_0^*+\varepsilon\xi(t_0^*))}{\varepsilon}|_{\varepsilon=0}\\ &=(\dot{C}(t_0^*)-\dot{x}^*(t_0^*))\xi(t_0^*)\\ &=\eta(t_0^*) \end{aligned} \]

则可得边界条件与横截条件为

\[\begin{cases} x(t_f)=x_f,\\ x(t_0)=\Phi(t_f),\\ (\dot{\Phi}(t_0^*)-\dot{x}^*(t_0^*))\frac{\partial L}{\partial \dot{x}}|_{t_0^*}+L[x^*(t_0^*), \dot{x}^*(t_0^*),t_0^*]=0.\\ \end{cases} \]

总结:在终端时刻不确定的条件下,求解无约束条件的泛函极值问题时,若给定了边界条件,则直接应用边界条件,若始端或终端状态的条件未给出,则需要使用始端或终端的横截条件进行求解。求解条件如下表所示:

边界条件
给定始端状态与终端状态 \(x(t_0)=x_0, x(t_f)=x_f, L[x(t_f^*), \dot{x}(t_f^*), t_f^*]=0\)
始端状态给定终端状态自由 \(x(t_0)=x_0\),\(\frac{\partial L}{\partial \dot{x}}|_{t_f^*}=0\),\(L[x(t_f^*), \dot{x}(t_f^*), t_f^*]=0\)
始端状态给定,终端状态有约束(要求 \(x(t_f)=C(t_f)\) \(x(t_0)=x_0,x(t_f)=C(t_f),(\dot{C}(t_f^*)-\dot{x}^*(t_f^*))\frac{\partial L}{\partial \dot{x}}|_{t_f^*}+L[x^*(t_f^*), \dot{x}^*(t_f^*),t_f^*]=0\)
始端状态有约束(要求 \(x(t_0)=\Phi(t_0)\)),终端状态固定 \(x(t_f)=x_f,x(t_0)=\Phi(t_0),(\dot{\Phi}(t_0^*)-\dot{x}^*(t_0^*))\frac{\partial L}{\partial \dot{x}}|_{t_0^*}+L[x^*(t_0^*), \dot{x}^*(t_0^*),t_0^*]=0.\)

例题

求使性能指标

\[J=\displaystyle \int_{t_0}^{t_f}(1+\dot{x}^2)^{\frac{1}{2}}dt \]

为极小时的最优轨线 \(x^*(t)\)。设 \(x(0)=1, x(t_f)=C(t_f), C(t_f)=2-t\), \(t_f\) 未给定。
解题思路 本题为无约束条件,始端状态时刻给定,终端状态有约束,终端时刻自由的泛函极值问题。
\(L(x,\dot{x},t)=(1+\dot{x}^2)^{\frac{1}{2}}\)。则可得欧拉-拉格朗日方程为

\[\frac{\partial L}{\partial x}-\frac{d}{dt}\frac{\partial L}{\partial \dot{x}}=0,\tag{e1} \]

可得

\[-\frac{d}{dt}(\frac{\dot{x}}{(1+\dot{x}^2)^{\frac{1}{2}}})=0,\tag{e2} \]

则有

\[\frac{\dot{x}}{(1+\dot{x}^2)^{\frac{1}{2}}}=c,\tag{e3} \]

\[\dot{x}^2=\frac{c^2}{1-c^2}, c^2\neq1.\tag{e4} \]

\(\dot{x}\) 为常数,进而可知 \(x(t)\) 为一次函数形式,设

\[x(t)=at+b, \tag{e5} \]

代入初始条件 \(x(0)=1\) 可得 \(b=1\)。由横截条件

\[(\dot{c}(t_f)-\dot{x}(t_f))\frac{\partial L}{\partial \dot{x}}|t_f=t_f^*+L(x(t_f),\dot{x}(t_f),t_f)=0 \]

可得

\[(-1-a)[\frac{a}{(1+a^2)^{\frac{1}{2}}}]+(1+a^2)^{\frac{1}{2}}=0, \]

整理可得

\[a(a-1)(a+2)=0,\tag{e6} \]

由(e6)可知 \(a=0\), 或 \(a=1\)\(a=-1\). 经验算可知 \(a=-1\) 时,不满足终端约束 \(x(t_f)=c(t_f)\),即会有 \(-t_f+1=2-t_f\)。所以\(a=0\), 或 \(a=1\)
(1)当 \(a=0\) 时,最优轨迹为 \(x(t)=1\), 代入条件 \(x(t_f)=c(t_f)\),得最优时刻为 \(t_f^*=1\)
(2)当\(a=1\) 时,最优轨迹为 \(x(t)=t+1\), 代入条件 \(x(t_f)=c(t_f)\),得最优时刻为 \(t_f^*=\frac{1}{2}\)

posted on 2022-11-23 17:18  Sunshining15  阅读(470)  评论(0)    收藏  举报