题目链接: (bzoj)https://www.lydsy.com/JudgeOnline/problem.php?id=4006

(luogu)https://www.luogu.org/problemnew/show/P3264

题解: 终于写出来斯坦纳树了。。

我一直不明白的地方是: spfa那种转移为什么是直接加边权?为什么没有一些特殊情况(如从根转移到儿子)不是加边权?后来觉得大概是因为那种特殊情况如果出现,则一定会在枚举子集的转移中被转移到。

做法就是,先对每个特殊点的子集求出来最小斯坦纳树,然后设\(dp[S]\)表示颜色集合\(S\)内的最小答案,那么\(dp[S]\)可以直接等于它所对应的关键点集合的斯坦纳树,也可以由好几个子集合并过来,枚举子集转移即可。

时间复杂度\(O(ShortestPath(n,m)\times 2^p+n3^p)\)

这里貌似SPFA比Dijkstra略快一些。(我在洛谷上开O2,spfa 3234ms, Dijkstra 6695ms, 不开O2 spfa T成65, Dijkstra T成40)

代码

SPFA

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;

const int N = 1e3;
const int M = 3e3;
const int NN = 10;
const int INF = 707406378;
struct Edge
{
    int v,w,nxt;
} e[(M<<1)+3];
int fe[N+3];
int ky[NN+3];
int clrset[(1<<NN)+3];
int clr[NN+3];
int dp[N+3][(1<<NN)+3];
int ans[(1<<NN)+3];
bool inq[M+3];
int que[M+3];
int n,m,nn,en;

void addedge(int u,int v,int w)
{
    en++; e[en].v = v; e[en].w = w;
    e[en].nxt = fe[u]; fe[u] = en;
}

void update(int &x,int y) {x = x<y?x:y;}

void SPFA(int sta)
{
    int head = 1,tail = 1;
    for(int i=1; i<=n; i++)
    {
        if(dp[i][sta]<INF)
        {
            que[tail] = i; tail++; if(tail>n+1) tail = 1;
            inq[i] = true;
        }
    }
    while(head!=tail)
    {
        int u = que[head]; head++; if(head>n+1) head = 1;
        for(int i=fe[u]; i; i=e[i].nxt)
        {
            int v = e[i].v;
            if(dp[u][sta]+e[i].w<dp[v][sta])
            {
                dp[v][sta] = dp[u][sta]+e[i].w;
                if(!inq[v])
                {
                    que[tail] = v; tail++; if(tail>n+1) tail = 1;
                    inq[v] = true;
                }
            }
        }
        inq[u] = false;
    }
}

int main()
{
    scanf("%d%d%d",&n,&m,&nn);
    for(int i=1; i<=m; i++)
    {
        int x,y,z; scanf("%d%d%d",&x,&y,&z);
        addedge(x,y,z); addedge(y,x,z);
    }
    for(int i=0; i<nn; i++)
    {
        scanf("%d%d",&clr[i],&ky[i]); clr[i]--;
        clrset[1<<clr[i]] |= (1<<i);
    }
    memset(dp,42,sizeof(dp));
    for(int i=0; i<nn; i++) dp[ky[i]][(1<<i)] = 0;
    for(int i=1; i<(1<<nn); i++)
    {
        for(int j=(i-1)&i; j; j=(j-1)&i)
        {
            for(int k=1; k<=n; k++)
            {
                dp[k][i] = min(dp[k][i],dp[k][i^j]+dp[k][j]);
            }
        }
        SPFA(i);
    }
    for(int i=1; i<(1<<nn); i<<=1)
    {
        for(int j=0; j<(1<<nn); j++)
        {
            if(j&i)
            {
                clrset[j] |= clrset[i];
            }
        }
    }
    for(int i=1; i<(1<<nn); i++)
    {
        ans[i] = INF;
        for(int j=1; j<=n; j++)
        {
            update(ans[i],dp[j][clrset[i]]);
        }
        for(int j=(i-1)&i; j; j=(j-1)&i)
        {
            update(ans[i],ans[j]+ans[i^j]);
        }
    }
    printf("%d\n",ans[(1<<nn)-1]);
    return 0;
}

Dijkstra

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;

const int N = 1e3;
const int M = 3e3;
const int NN = 10;
const int INF = 707406378;
struct Edge
{
    int v,w,nxt;
} e[(M<<1)+3];
struct DijNode
{
    int u,dis;
    DijNode() {}
    DijNode(int _u,int _dis) {u = _u,dis = _dis;}
    bool operator <(const DijNode &arg) const {return dis>arg.dis;}
};
int fe[N+3];
bool vis[N+3];
int ky[NN+3];
int clrset[(1<<NN)+3];
int clr[NN+3];
int dp[N+3][(1<<NN)+3];
int ans[(1<<NN)+3];
priority_queue<DijNode> que;
int n,m,nn,en;

void addedge(int u,int v,int w)
{
    en++; e[en].v = v; e[en].w = w;
    e[en].nxt = fe[u]; fe[u] = en;
}

void update(int &x,int y) {x = min(x,y);}

void Dijkstra(int sta)
{
    while(!que.empty())
    {
        DijNode tmp = que.top(); que.pop(); int u = tmp.u;
        if(tmp.dis!=dp[u][sta]) continue;
        vis[u] = true;
        for(int i=fe[u]; i; i=e[i].nxt)
        {
            int v = e[i].v;
            if(vis[v]==false && dp[u][sta]+e[i].w<dp[v][sta])
            {
                dp[v][sta] = dp[u][sta]+e[i].w;
                que.push(DijNode(v,dp[v][sta]));
            }
        }
    }
    for(int i=1; i<=n; i++) vis[i] = false;
}

int main()
{
    scanf("%d%d%d",&n,&m,&nn);
    for(int i=1; i<=m; i++)
    {
        int x,y,z; scanf("%d%d%d",&x,&y,&z);
        addedge(x,y,z); addedge(y,x,z);
    }
    for(int i=0; i<nn; i++)
    {
        scanf("%d%d",&clr[i],&ky[i]); clr[i]--;
        clrset[1<<clr[i]] |= (1<<i);
    }
    memset(dp,42,sizeof(dp));
    for(int i=0; i<nn; i++) dp[ky[i]][(1<<i)] = 0;
    for(int i=1; i<(1<<nn); i++)
    {
        for(int j=(i-1)&i; j; j=(j-1)&i)
        {
            for(int k=1; k<=n; k++)
            {
                dp[k][i] = min(dp[k][i],dp[k][i^j]+dp[k][j]);
            }
        }
        for(int j=1; j<=n; j++)
        {
            if(dp[j][i]!=INF)
            {
                que.push(DijNode(j,dp[j][i]));
            }
        }
        Dijkstra(i);
    }
    for(int i=1; i<(1<<nn); i<<=1)
    {
        for(int j=0; j<(1<<nn); j++)
        {
            if(j&i)
            {
                clrset[j] |= clrset[i];
            }
        }
    }
    for(int i=1; i<(1<<nn); i++)
    {
        ans[i] = INF;
        for(int j=1; j<=n; j++)
        {
            update(ans[i],dp[j][clrset[i]]);
        }
        for(int j=(i-1)&i; j; j=(j-1)&i)
        {
            update(ans[i],ans[j]+ans[i^j]);
        }
    }
    printf("%d\n",ans[(1<<nn)-1]);
    return 0;
}