第三次作业

这个作业属于哪个课程 https://edu.cnblogs.com/campus/qdu/DS2020/
这个作业要求在哪里 https://edu.cnblogs.com/campus/qdu/DS2020/homework/11232
这个作业的目标 预备实验
学号 2018204212

实验一 顺序表与链表
一、实验目的
1、掌握线性表中元素的前驱、后续的概念。
2、掌握顺序表与链表的建立、插入元素、删除表中某元素的算法。
3、对线性表相应算法的时间复杂度进行分析。
4、理解顺序表、链表数据结构的特点(优缺点)。

二、实验预习
说明以下概念
1、线性表:线性表是由n(n>=0)个数据元素(结点)a1,a2,...,an组成的有限序列。

2、顺序表:把线性表的结点按逻辑次序依次存放在一组地址连续的存储单元里,用这样的存储方式的线性表简称为顺序表。

3、链表:通常我们将链接方式存储的线性表称为链表。

三、实验内容和要求
1、阅读下面程序,在横线处填写函数的基本功能。并运行程序,写出结果。

#include<stdio.h>
#include<malloc.h>
#define ERROR 0
#define OK 1

#define INIT_SIZE 5     /*初始分配的顺序表长度*/
#define INCREM 5        /*溢出时,顺序表长度的增量*/
typedef  int ElemType;  /*定义表元素的类型*/
typedef struct Sqlist{
	ElemType *slist;      /*存储空间的基地址*/
	int length;           /*顺序表的当前长度*/
	int listsize;         /*当前分配的存储空间*/
}Sqlist;

int InitList_sq(Sqlist *L); /*初始化顺序表*/
int CreateList_sq(Sqlist *L,int n); /*建立顺序表*/
int ListInsert_sq(Sqlist *L,int i,ElemType e);/*插入结点e*/
int PrintList_sq(Sqlist *L);  /*输出顺序表的元素*/
int ListDelete_sq(Sqlist *L,int i); /*删除第i个元素*/
int ListLocate(Sqlist *L,ElemType e); /*查找值为e的元素*/

int InitList_sq(Sqlist *L){
    L->slist=(ElemType*)malloc(INIT_SIZE*sizeof(ElemType));
    if(!L->slist) return ERROR;      
    L->length=0;                     
    L->listsize=INIT_SIZE;           
    return OK;                   
}/*InitList*/

int CreateList_sq(Sqlist *L,int n){
    ElemType e;
    int i;
    for(i=0;i<n;i++){
        printf("input data %d",i+1);
        scanf("%d",&e);
        if(!ListInsert_sq(L,i+1,e))
            return ERROR;
    }
    return OK;
}/*CreateList*/

/*输出顺序表中的元素*/
int PrintList_sq(Sqlist *L){
    int i;
    for(i=1;i<=L->length;i++)
        printf("%5d",L->slist[i-1]);
    return OK;
}/*PrintList*/

int ListInsert_sq(Sqlist *L,int i,ElemType e){
    int k;
if(i<1||i>L->length+1) 
return ERROR;    
if(L->length>=L->listsize){  
L->slist=(ElemType*)realloc(L->slist,
(INIT_SIZE+INCREM)*sizeof(ElemType));
        if(!L->slist) 
return ERROR; 
L->listsize+=INCREM;                
}
    for(k=L->length-1;k>=i-1;k--){         
        L->slist[k+1]= L->slist[k];
    }
    L->slist[i-1]=e;                     
    L->length++;                         
    return OK;
}/*ListInsert*/

/*在顺序表中删除第i个元素*/
int ListDelete_sq(Sqlist *L,int i){


}
/*在顺序表中查找指定值元素,返回其序号*/
int ListLocate(Sqlist *L,ElemType e){    


}

int main(){
    Sqlist sl;
    int n,m,k;
    printf("please input n:");  /*输入顺序表的元素个数*/
    scanf("%d",&n);
    if(n>0){
        printf("\n1-Create Sqlist:\n");
        InitList_sq(&sl);
        CreateList_sq(&sl,n);
        printf("\n2-Print Sqlist:\n");
        PrintList_sq(&sl);
        printf("\nplease input insert location and data:(location,data)\n");
	    scanf("%d,%d",&m,&k);
	    ListInsert_sq(&sl,m,k);
	    printf("\n3-Print Sqlist:\n");
	    PrintList_sq(&sl);
	    printf("\n");
        }
    else
        printf("ERROR");
    return 0;
}

运行结果

算法分析
时间复杂度:O(n)

2、为第1题补充删除和查找功能函数,并在主函数中补充代码验证算法的正确性。
删除算法代码:

int ListDelete_sq(Sqlist *L,int i)
{
  int j;
  if(i<1||i>L->length+1) 
    {
    	printf("error");
    	return NULL;
	}
  else
    {
    	for(j=i;j<=L->length;j++)        
        L->slist[j-1]= L->slist[j];
        L->length--;  
	}               
    return 1;
}

运行结果

算法分析
若i=n,则由于循环变量的初值大于终值,前移语句将不再执行,无须移动结点;若i=n则前移语句将循环执行n-1次,需移动表中除结点外的所有结点。这两种情况下的算法的时间复杂度分别是O(1)和O(n)。

查找算法代码:

/*在顺序表中查找指定值元素,返回其序号*/
int ListLocate(Sqlist *L,ElemType e)
{    
  int i;
  for(i=0;i<=L->length;i++)
	if(L->slist[i]==e) return (i+1);
  return 0;
}

运行结果

算法分析
当把顺序表和要查找的值e传值进去时,程序开始从顺序表第一个元素开始依次遍历,直到找到值为e的元素,并返回其位置序号。若遍历了顺序表所有元素依然没有符合条件的e的值,则返回0。

3、阅读下面程序,在横线处填写函数的基本功能。并运行程序,写出结果。

#include<stdio.h>
#include<malloc.h>
#define ERROR 0
#define OK 1
typedef  int ElemType; /*定义表元素的类型*/
typedef struct LNode{  /*线性表的单链表存储*/
    ElemType data;
    struct LNode *next;
}LNode,*LinkList;

LinkList CreateList(int n); /*建立长度为n的单链表*/
void PrintList(LinkList L); /*输出带头结点单链表的所有元素*/
int GetElem(LinkList L,int i,ElemType *e); /*查找第i个位置的元素*/

LinkList CreateList(int n){
    LNode *p,*q,*head;
    int i;
    head=(LinkList)malloc(sizeof(LNode));        head->next=NULL;
    p=head;
    for(i=0;i<n;i++){
       q=(LinkList)malloc(sizeof(LNode));       printf("input data %i:",i+1);
       scanf("%d",&q->data);            /*输入元素值*/
       q->next=NULL;                    /*结点指针域置空*/
       p->next=q;                       /*新结点连在表末尾*/
       p=q;
    }
    return head;
}/*CreateList*/

void PrintList(LinkList L){
    LNode *p;
    p=L->next;  /*p指向单链表的第1个元素*/
    while(p!=NULL){
        printf("%5d",p->data);
        p=p->next;
    }
}/*PrintList*/

int GetElem(LinkList L,int i,ElemType *e){
    LNode *p;int j=1;
    p=L->next;
    while(p&&j<i){                      
        p=p->next;j++;
    }
    if(!p||j>i)
        return ERROR;                  
*e=p->data;                       
return OK;
}/*GetElem*/

int main(){
    int n,i;ElemType e;
    LinkList L=NULL;            /*定义指向单链表的指针*/
    printf("please input n:");  /*输入单链表的元素个数*/
    scanf("%d",&n);
    if(n>0){
        printf("\n1-Create LinkList:\n");
        L=CreateList(n);        
        printf("\n2-Print LinkList:\n");
        PrintList(L);           
        printf("\n3-GetElem from LinkList:\n");
        printf("input i=");
        scanf("%d",&i);
        if(GetElem(L,i,&e))     
            printf("No%i is %d",i,e);
        else
            printf("not exists");
    }else
        printf("ERROR");
    return 0;
}

运行结果

算法分析
算法时间复杂度:O(n)

4、为第3题补充插入功能函数和删除功能函数。并在主函数中补充代码验证算法的正确性。
插入算法代码:

int LengthList(LinkList L)
{
	int i = 0;
	LNode* p = NULL;
	for(p = L;p->next!=NULL;p=p->next){
		i++;
	}
	return i;
}
int InsertList(LinkList L,int i,int e) 
{
	if(i<0||i>LengthList(L)) return ERROR;
	LNode* p;
	LNode* q;
	LNode* r;
	r = (LinkList)malloc(sizeof(LNode));
	r->data = e;
	if(i==0)
	{
		p = L;
		q = p->next;
		p->next = r;
		r->next = q;
		return OK;
	} 
	int j = 0;
	for(p = L;j < i;j++)  p=p->next;			
	q = p->next;
	p->next = r;
	r->next = q;
	return 1;
}

运行结果

算法分析
插入时间复杂度:O(1)

删除算法代码:

void ListDelete(LinkList L, int i)
{
	LNode *p, *q;
	int j;
	p=L; j=0;
	while (p->next&&j<i-1) 
	{
		p=p->next;++j;
	}
	q=p->next;
	p->next=q->next;
	free (q) ;
}

运行结果

算法分析
时间复杂度:O(n)

以下为选做实验:
5、循环链表的应用(约瑟夫回环问题)
n个数据元素构成一个环,从环中任意位置开始计数,计到m将该元素从表中取出,重复上述过程,直至表中只剩下一个元素。
提示:用一个无头结点的循环单链表来实现n个元素的存储。
算法代码

6、设一带头结点的单链表,设计算法将表中值相同的元素仅保留一个结点。
提示:指针p从链表的第一个元素开始,利用指针q从指针p位置开始向后搜索整个链表,删除与之值相同的元素;指针p继续指向下一个元素,开始下一轮的删除,直至p==null为至,既完成了对整个链表元素的删除相同值。
算法代码

四、实验小结
顺序表和链表运用了大量的指针,应用不够熟练,对指针的认识不深,当然也可以采用非指针的方式构造顺序表和链表。学习了表的构造,插入,查找,删除算法等。

posted @ 2020-10-08 19:56  Breeze。  阅读(195)  评论(0编辑  收藏  举报