e的存在性证明和计算公式的证明

\(\quad\quad前言\quad\quad\\\)
\(此证明,改编自中科大数分教材,史济怀版\\\)
\(中科大教材,用的是先固定m,再放大m,跟菲赫金哥尔茨的方法一样。\\\)
\(而我这里的证明,是依据m的任意性,后来发现小平邦彦的《微积分入门》里,也是用的这个方法,即,m的任意性。\\\)
\(中科大和菲赫金哥尔茨用的记号是a_{m},我在知乎咨询龚漫奇老师后,根据龚老师的建议,改为a_{n,m},以避免\\\)
\(混淆,否则a_{m},相当于a_{n}的n取值m,只有一个变量n,取值m,而a_{n}{m}有两个变量m,n\\\)
\(对e_{n,m}取极限时,相当于二元二次极限(注意,非二重极限),即n,m,一先一后取极限,而非二重极限\\\)
\(同时,我在证明中明确了数列极限的保不等式性的应用,\\\)
\(用了两次数列保不等式性,把e当做常数数列。\\\)
\(中科大和菲赫金哥尔茨的先固定m,对n取极限之后,再对m取极限,本质上就是二元二次极限,但是并未明确提及\\\)
\(二元二次极限这个概念\)
\(------------------------------------------------------------\\\)
\(记S_{n}=\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+\cdot\cdot\cdot+\frac{1}{n!}\)
\(显然,S_{n}是递增数列, 且\)
\(S_{n}\leqslant1+1+\frac{1}{2}+\frac{1}{2^2}+\cdot\cdot\cdot+\frac{1}{2^(n-1)}<3\)
\(显然,S_{n}是递增\)
\(因为当n趋于无穷时,1+1+\frac{1}{2}+\frac{1}{2^2}+\cdot\cdot\cdot+\frac{1}{2^(n-1)}=3\)
\(故S_{n}是递增有界数列,可知其必有极限,设其极限为S\)
\(则S=lim_{n \to \infty}\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+\cdot\cdot\cdot+\frac{1}{n!}\)
\(对e_{n}进行二项式展开\)
\(e_{n}={(1+\frac{1}{n})}^{n}\) (其中,n\(\in\)\(N^{+}\))
\(\quad=\sum_{k=0}^{n}\)\(C_{n}^{n-k}\)\((\frac{1}{n})^{k}\)
\(\quad=1+\sum_{k=1}^{n}\)\(C_{n}^{n-k}\)\(\frac{1}{n^{k}}\)
\(\quad=1+\sum_{k=1}^{n}\frac{n!}{(n-k)!k!}\frac{1}{n^{k}}\)
\(\quad=1+\sum_{k=1}^{n}\frac{1}{k!}\frac{n!}{(n-k)!}\frac{1}{n^{k}}\)
\(\quad=1+\sum_{k=1}^{n}\frac{1}{k!}\frac{(n-k+1)(n-k+2)\cdot\cdot\cdot n}{n^{k}}\)
\(因为 1*2*3\cdot\cdot\cdot(n-k)(n-k+1)(n-k+2)...n\)
从1到n-k,一共是n-k个连续数字相乘,从n-k+1到n,合计k个连续数字相乘,从1到n,合计是n个连续数字相乘

上式\(=1+\sum_{k=1}^{n}\frac{1}{k!}\frac{(n-k+1)(n-k+2)(n-k+3)\cdot\cdot\cdot (n-2)(n-1)n(一共k个数字)}{nnn\cdot\cdot\cdot n(一共k个n)}\)
\(\quad=1+\sum_{k=1}^{n}\frac{1}{k!}\frac{n(n-1)(n-2)\cdot\cdot\cdot (n-k+3)(n-k+2)(n-k+1)(一共k个数字)}{nnn\cdot\cdot\cdot n(一共k个n)}\)
\(\quad=1+\sum_{k=1}^{n}\frac{1}{k!}\frac{n}{n}\frac{n-1}{n}\frac{n-2}{n}\cdot\cdot\cdot\frac{n-k+2}{n}\frac{n-k+1}{n}\)
\(\quad=1+\sum_{k=1}^{n}\frac{1}{k!}*1*(1-\frac{1}{n})(1-\frac{2}{n})\cdot\cdot\cdot\frac{n-k+2}{n}\frac{n-k+1}{n}\)
\(\quad=1+\sum_{k=1}^{n}\frac{1}{k!}(1-\frac{1}{n})(1-\frac{2}{n})\cdot\cdot\cdot (1-\frac{k-2}{n})(1-\frac{k-1}{n})\) (一共k-1个括号)
展开连加号
\(\quad=1+\frac{1}{1!}+\frac{1}{2!}(1-\frac{1}{n})+\frac{1}{3!}(1-\frac{1}{n})(1-\frac{2}{n})+\cdot\cdot\cdot+\frac{1}{n!}(1-\frac{1}{n})(1-\frac{2}{n})\cdot\cdot\cdot(1-\frac{n-1}{n})\)
上式最后一项,是取k=n,一共n-1个括号
上式一共n+1项
\(由上式可知\\\)
\(e_{n}\leqslant1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\cdot\cdot\cdot+\frac{1}{n!}\)
\(\quad\leqslant1+1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}\cdot\cdot\cdot+\frac{1}{2^n}\)
\(=1+1*\frac{1-\frac{1}{2}^n}{1-\frac{1}{2}}\)
\(=1+2*(1-\frac{1}{2}^n)\)
\(=1+2-\frac{1}{2^{n-1}}\)\(\\\)
< 3
\(且e_{n}\leqslant S\)
\(e_{n+1}={(1+\frac{1}{n+1})}^{n+1}\) (其中,n\(\in\)\(N^{+}\))
\(\quad=\sum_{k=0}^{n+1}\)\(C_{n+1}^{n+1-k}\)\((\frac{1}{n+1})^{k}\)
\(\quad=\sum_{k=0}^{n+1}\frac{1}{k!}\frac{(n+1)!}{(n+1-k)!}\frac{1}{(n+1)^k}\)
\(\quad=\sum_{k=0}^{n+1}\frac{1}{k!}\frac{(n+1-k+1)(n+1-k+2)(n+1-k+3)\cdot\cdot\cdot(n+1)(k个括号)}{(n+1)^k}\) bbbb
\(\quad=\sum_{k=0}^{n+1}\frac{1}{k!}\frac{(n+1-k+1)(n+1-k+2)(n+1-k+3)\cdot\cdot\cdot(n+1)(k个括号)}{(n+1)\cdot\cdot\cdot(n+1)(k个(n+1))}\)
\(\quad=\sum_{k=0}^{n+1}\frac{1}{k!}\frac{(n+1)n(n-1)\cdot\cdot\cdot(n+1-k+3)(n+1-k+2)(n+1-k+1)(k个括号)}{(n+1)\cdot\cdot\cdot(n+1)(k个(n+1))}\)
\(\quad=1+\sum_{k=1}^{n+1}\frac{1}{k!}(1-\frac{1}{n+1})(1-\frac{2}{n+1})\cdot\cdot\cdot (1-\frac{k-2}{n+1})(1-\frac{k-1} {n+1})\) (一共k-1个括号)\(\\\)
\(\quad=1+\frac{1}{1!}+\frac{1}{2!}(1-\frac{1}{n+1})+\frac{1}{3!}(1-\frac{1}{n+1})(1-\frac{2}{n+1})+\cdot\cdot\cdot+\frac{1}{(n+1)!}(1-\frac{1}{n+1})(1-\frac{2}{n+1})\cdot\cdot\cdot(1-\frac{n}{n+1})\)
\(即:e_{n}=1+\frac{1}{1!}+\frac{1}{2!}(1-\frac{1}{n})+\frac{1}{3!}(1-\frac{1}{n})(1-\frac{2}{n})+\cdot\cdot\cdot+\frac{1}{n!}(1-\frac{1}{n})(1-\frac{2}{n})\cdot\cdot\cdot(1-\frac{n-1}{n})\\\)
\(即:e_{n+1}=1+\frac{1}{1!}+\frac{1}{2!}(1-\frac{1}{n+1})+\frac{1}{3!}(1-\frac{1}{n+1})(1-\frac{2}{n+1})+\cdot\cdot\cdot+\frac{1}{(n+1)!}(1-\frac{1}{n+1})(1-\frac{2}{n+1})\cdot\cdot\cdot(1-\frac{n}{n+1})\\\)
\(可知e_{n+1}为n+2项,e_{n}为n+1项,e_{n+1}比e_{n}多一项,且前面的n+1项都大于e_{n}的对应位置的项\\\)
\(可知e_{n+1}>e_{n}, 可知e_{n}为递增数列,且有上界3,根据单调递增有界数列必有极限,可知e_{n}有极限。\)\(\\\)
\(为e,即lim_{n\to \infty}e_{n}=e\)
\(即lim_{n\to \infty}e_{n}=lim_{n\to \infty}(1+\frac{1}{1!}+\frac{1}{2!}(1-\frac{1}{n})+\frac{1}{3!}(1-\frac{1}{n})(1-\frac{2}{n})+\cdot\cdot\cdot+\frac{1}{n!}(1-\frac{1}{n})(1-\frac{2}{n})\cdot\cdot\cdot(1-\frac{n-1}{n}))\)
\(\forall m\in N^+且m\leqslant n,设\\\)
\(e_{n,m}=1+\frac{1}{1!}+\frac{1}{2!}(1-\frac{1}{n})+\cdot\cdot+\frac{1}{m!}(1-\frac{1}{n})(1-\frac{2}{n})\cdot\cdot\cdot(1-\frac{m-1}{n})\\\)
\(即:e_{n,m}是e_{n}的前m项和,所以,\forall n 都有下面的不等式成立\)
\(e_{n}\geqslant e_{n,m}\)
\(根据数列极限的保不等式性,两侧对n取极限,不等式依然成立,即:\\\)
\(lim_{n \to \infty}e_{n}\geqslant lim_{n \to \infty}e_{n,m}=1+1+\frac{1}{2!}+\frac{1}{3!}+\cdot\cdot+\frac{1}{m!}\)
\(即\quad e \geqslant lim_{n \to +\infty}e_{n,m}=1+1+\frac{1}{2!}+\frac{1}{3!}+\cdot\cdot+\frac{1}{m!}\)
\(此时该不等式左侧为常量e,右侧的最终结果,已经不包含变量n,仅包含变量m,而m的要求是m\leqslant n,此时n为无穷大,\\\)
\(所以m可以取任意值,即\forall m,都有 e\geqslant lim_{n \to \infty}e_{n,m}=1+1+\frac{1}{2!}+\frac{1}{3!}+\cdot\cdot+\frac{1}{m!}=S_{m}\\\)
由数列极限的保不等式性,对m取极限,可得
\(e\geqslant lim_{m \to \infty}lim_{n \to \infty}e_{n,m}=lim_{m \to \infty}\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+\cdot\cdot++\frac{1}{m!}=S\)
\(而前面已经证明 e\leqslant S\)
\(故,得到S\leqslant e\leqslant S\quad\quad (注意 \geqslant意为"不小于",\leqslant意为“不大于”)\)
所以 e=S,即
\(e=lim_{n \to \infty}(\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+\cdot\cdot+...\frac{1}{n!})\)

\(说明:在n\to \infty的过程中,e_{n}各项都在增大,趋于对应的阶乘倒数,\\\)
\(在n取无穷大时,e_{n\to +\infty}所有项的极限都是阶乘倒数,其极限和的极限是倒数阶乘之和\\\)

posted @ 2020-07-20 15:29  strongdady  阅读(1126)  评论(0编辑  收藏  举报