celery
celery:中文翻译为芹菜.celery是python开发的一个简单,灵活可靠的处理大量任务的分发系统,它可以让任务的执行完全脱离主程序,甚至可以分配到其他主机上运行,我们通常用它来实现异步任务和定时任务,异步任务比如是发送邮件、或者文件上传, 图像处理等等一些比较耗时的操作 .
- user:用户程序,用于告知celery去执行一个任务。
- broker(中间件): 存放任务(依赖RabbitMQ或Redis,进行存储)
- worker:执行任务
celery需要rabbitMQ、Redis、Amazon SQS、Zookeeper(测试中) 充当broker来进行消息的接收,并且也支持多个broker和worker来实现高可用和分布式。
1.当celery收到用户请求后,它会立即返回给用户一个id,这时候用户就可以去干别的事情了.
2.celery把用户的请求放到broker中,
3.worker会从broker中拿用户请求进行处理.
4.worker把请求处理完了,会放到AsyncResult对象(backend)中,
5.用户根据id从backend中取值.
注意:用户需要亲自从backend中取值,如果不取的话,数据会一直在backend中待着.
应用场景:当处理一个任务很耗时的情况下.
调用任务的方式有两种
#第一种 task.delay(arg, kwarg=value) # task就是你的任务也就是你的函数名,括号里的参数就是你要给你的任务函数传的参数
#第二种task.apply_async() #这个函数又包括好多的参数 # 1 task.apply_async(countdown=10) executes in 10 seconds from now. # 2 task.apply_async(eta=now + timedelta(seconds=10)) executes in 10 seconds from now, specified using eta now = datetime.datetime.utcnow() # 3 task.apply_async(countdown=60, expires=120) executes in one minute from now, but expires after 2 minutes.
快速上手
1.建立worker. s1.py
import time from celery import Celery #执行celery的命令为:celery worker -A 文件名 -l info 注意不要加.py #tasks任务名字,broker存放任务的,backend是一个存放worker处理完的结果的队列 app = Celery('tasks', broker='redis://127.0.0.1:6379', backend='redis://127.0.0.1:6379') @app.task def xxxxxx(x, y): time.sleep(10)#用来模拟work的执行时间 return x + y @app.task def ooo(x,y): time.sleep(8) return x-y
2.调用者 s2.py
from s1 import xxxxxx # 立即告知celery去执行xxxxxx任务,并传入两个参数 result = xxxxxx.delay(4, 4) print(result.id)#返回celery返回的随机字符串即唯一标识
3.从存放结果的队列中拿数据 s3.py
from celery.result import AsyncResult from s1 import app #导入实例化的Celery对象 from s2 import result #导入Celery返回的对象 async = AsyncResult(id=result.id, app=app) if async.successful(): #如果这个任务执行完了 result = async.get() #从backend的队列中拿数据 print("结果为",result) # result.forget() # 将结果从backend的队列中删除。 elif async.failed(): print('执行失败') elif async.status == 'PENDING': print('任务正在等待被执行') elif async.status == 'RETRY': print('任务异常后正在重试') elif async.status == 'STARTED': print('任务正在执行,还没有执行完')
执行命令
#1把work运行起来用来接收数据,这个文件会夯住等待知道broker中任务,才执行 celery worker -A s1 -l info #运行调用work中的函数的py文件 python3 s2.py #3 运行文件从backend中拿数据的 python3 s3.py
定时调用
告诉celery10s后帮我执行任务.
修改s2文件为s4.py
from s1 import xxxxxx import datetime #把本地时间转换成utc时间 ctime_x = datetime.utcnow()+timedelta(seconds=10) #告知celery,10s后帮我执行任务 result=xxxxxx.apply_async(args=[4,5] ,eta=ctime_x)#eta必须是utc时间
celery还有类似于crontab的功能,比如在每天8:42执行某项任务可以在celery.py中这么写
from celery import Celery #tasks任务名字,broker存放任务的,backend存放结果的 cel_obj = Celery('tasks', broker='redis://127.0.0.1:6379', backend='redis://127.0.0.1:6379', include=['celery_task.s1'])#include里放要执行的任务 #第一种定时任务 cel_obj .conf.beat_schedule = { 'add-every-12-seconds': { 'task': 'proj.s1.add1', #任务名称 'schedule': crontab(minute=42, hour=8),#每天8:42执行该任务 'args': (16, 16) #给该任务传递的参数 }, #第二种定时任务: 'add-every-10-seconds': { 'task': 'proj.s1.add1', #任务名称 'schedule': 10.0, #每隔10秒钟执行一次 'args': (16, 16) #该任务需要的参数 },
应用场景:
每天网上22点统计这一天的销售数据,
celery在Flask中的应用
创建一个存放celery的目录结构,该结构中必须有一个名叫celery的py文件.
目录结构为:
celery_celery
....celery_task
celery.py
s1.py(这个就是worker)
....templates
add_task.html
index.html
....app.py
celery.py 这个其实是celery的配置文件,在这个文件里可以放置celery的定时任务
#一定要有一个celery文件 from celery import Celery #tasks任务名字,broker存放任务的,backend存放结果的 cel_obj = Celery('tasks', broker='redis://127.0.0.1:6379', backend='redis://127.0.0.1:6379', include=['celery_task.s1'])#include里放要执行的任务
s1.py 执行任务
import time from .celery import cel_obj @cel_obj.task def hello(*args, **kwargs): """ 执行任务 :param args: :param kwargs: :return: """ return "hello"
app.py文件
from flask import Flask,render_template,request,redirect from celery.result import AsyncResult from celery_task.s1 import hello from celery_task.celery import cel_obj app=Flask(__name__) TASK_LIST=[] @app.route('/index',methods=['GET']) def index(): return render_template('index.html',tasks=TASK_LIST) @app.route('/add_task',methods=['GET',"POST"]) def add_task(): """ 添加任务 :return: """ if request.method=="GET": return render_template('add_task.html') else: title=request.form.get('title') #在celery中添加一个定时+任务,10s后执行 ctime_x =datetime.utcnow() + datetime.timedelta(seconds=10) result=hello.apply_async(args=[1,3 ],eta=ctime_x) TASK_LIST.append({"id":result.id ,"title":title}) return redirect('/index') @app.route('/status') def status(): """ 查看celery中运行的结果 :return: """ id = request.args.get('id') # 根据id查看任务状态 try: async = AsyncResult(id=id, app=cel_obj) # async.revoke(terminate=True) # 无论现在是什么时候,都要终止 # async.revoke(terminate=False) # 如果任务还没有开始执行呢,那么就可以终止。 if async.successful(): result = async.get() return "执行完成,结果是:%s" %result # async.forget() # 将结果删除 elif async.failed(): return '执行失败' elif async.status == 'PENDING': return '任务等待中被执行' elif async.status == 'RETRY': return '任务异常后正在重试' elif async.status == 'STARTED': return '任务已经开始被执行' except Exception as e: return "执行异常" if __name__ == '__main__': app.run(debug=True)
index.html

<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <meta http-equiv="X-UA-Compatible" content="IE=edge"> <!--IE浏览器最高渲染--> <meta name="viewport" content="width=device-width, initial-scale=1"> <!--为了确保适当的绘制和缩放--> <title>Title</title> <link rel="stylesheet" href="../bootstrap-3.3.7-dist/css/bootstrap.min.css"> </head> <body> <a href="/add_task">创建任务</a> <table border="1"> <thead> <tr> <th>任务ID</th> <th>任务名称</th> <th>查看执行状态</th> </tr> </thead> <tbody> {% for task in tasks %} <tr> <td>{{task.id}}</td> <td>{{task.title}}</td> <td><a href="/status?id={{task.id}}">点击查看</a></td> </tr> {% endfor %} </tbody> </table> <script src="../jquery-3.2.1.min.js"></script> </body> </html>
add_task.html

<html lang="en" xmlns="http://www.w3.org/1999/html"> <head> <meta charset="UTF-8"> <meta http-equiv="X-UA-Compatible" content="IE=edge"> <!--IE浏览器最高渲染--> <meta name="viewport" content="width=device-width, initial-scale=1"> <!--为了确保适当的绘制和缩放--> <title>添加任务</title> <link rel="stylesheet" href="../bootstrap-3.3.7-dist/css/bootstrap.min.css"> </head> <body> <form method="post"> <input type="text" name="title"> <input type="submit" value="提交"> </form> <script src="../jquery-3.2.1.min.js"></script> </body> </html>
项目概述:
1.当你在add.html页面中添加一个任务后,celery会立即给你返回一个id和你要创建的title.
2.在celery返回用户请求id的同时他会把用户请求放到redis中,然后worker中redis中取用户请求,
3.worker执行hello函数期间,如果用户点击查看执行状态,会执行status函数会被告知
4.woker中把hello函数执行完放到backend中等待取.等待用户调用status函数来从backend中获取.
执行步骤:
1.进入项目中执行 celery -A task worker -P gevent -c 1000 #task是celery文件夹的名字
2.运行我们的项目
效果图:
(py36) Asaaron:test_celery gongsi$ celery -A task worker -P gevent -c 1000 -------------- celery@Asaaron v4.3.0 (rhubarb) ---- **** ----- --- * *** * -- Darwin-18.6.0-x86_64-i386-64bit 2019-09-20 11:38:38 -- * - **** --- - ** ---------- [config] - ** ---------- .> app: tasks:0x10cfea860 - ** ---------- .> transport: redis://127.0.0.1:6379// - ** ---------- .> results: redis://127.0.0.1:6379/ - *** --- * --- .> concurrency: 1000 (gevent) -- ******* ---- .> task events: OFF (enable -E to monitor tasks in this worker) --- ***** ----- -------------- [queues] .> celery exchange=celery(direct) key=celery
总结:
#1celery是一个基于python实现的用于完成任务处理和任务调度组件。 #2.celery的依赖 1. redis或rabbitmq #要是用celery必须有两个程序 1 worker 处理任务 2.我们自己的程序或项目: 添加任务到broker中,获取任务id 检查任务状态和查看任务结果:通过任务id从backend中拿结果 #在真实项目中要先运行worker再运行项目文件 #
@shared_task和@app.task的区别
当你在一个py文件中有两个Celery,并且这两个实例都要用到下边的这两个方法,这时候你就可以用@share_task,而app.task只能有一个方法使用
from celery import Celery,shared_task import time app1 = Celery('tasks',broker='redis://122.114.182.64:6379',backend='redis://122.114.182.64:6379') app2 = Celery('tasks',broker='redis://122.114.182.64:6379',backend='redis://122.114.182.64:6379') @shared_task def f1(x,y): time.sleep(5) return x + y @shared_task def f2(x,y): time.sleep(3) return x-y
详见博客
现实中使用celery的场景
1.生成报告的生成
2.售货机出货
flower
首先flower作为web页面来管理celery后台任务,和任务队列是隔离的,也就是flower的运行与否并不会影响到任务队列的真正执行,但是flower中可以通过API接口来管理celery中的任务执行。
1).查看任务历史,任务具体参数,开始时间等信息。
(2).提供图表和统计数据。
(3).实现全面的远程控制功能, 包括但不限于 撤销/终止任务, 关闭重启 worker, 查看正在运行任务。
(4).提供一个 HTTP API , 方便集成。
写的脚本
flower.py import subprocess cmd = [ 'flower', '--broker=redis://127.0.0.1:6379/0', # 监控的broker的地址 '--basic_auth=root:123456', # 登录flower需要的用户名和密码 '--port=5011', # flower需要的端口号 '--url_prefix=flower' # 主页的路径前缀 比如:https://west.com/flower/ ] if __name__ == '__main__': subprocess.run(cmd)
登录:127.0.0.1.:5011就可以看到