[POI2013]LUK-Triumphal arch

  • 由于syk大佬表示POI都是好题,于是我(被syk大佬一路暴踩后)来水水题解

  • 题意

    给一颗树,1号节点已经被染黑,其余是白的,两个人轮流操作,一开始B在1号节点,A选择k个点染黑,然后B走一步,如果B能走到A没染的节点则B胜,否则当A染完全部的点时,A胜。求能让A获胜的最小的k

  • solution

    二分答案,树形DP,首先二分k,将问题转化为判定性问题
    然后记DP[x]为在x的子树内博弈时,至少还要多染几个点才能使A赢
    明显DP[x]=max(sum(DP[to]+1)-k,0)这里to是x的儿子
    然后只要DP[1]=0则可行
    然后就做完了

  • code

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<vector>
#define N 2000100
using namespace std;
vector<int> v[N];
int dp[N];
int l,r,mid,n,ans;
void dfs(int x,int fa){
    dp[x]=0;
    for(int i=0;i<v[x].size();i++){
        int to=v[x][i];
        if(to==fa)continue;
        dfs(to,x);
        dp[x]+=dp[to]+1;//状态转移1
    }
    dp[x]=max(dp[x]-mid,0);//状态转移2
}
bool check(int t){
  dfs(1,0);
  return dp[1]==0;
}
int main(){
scanf("%d",&n);
if(n==1){cout<<0;return 0;}
for(int i=1;i<n;i++){
    int a,b;
    scanf("%d%d",&a,&b);
    v[a].push_back(b),v[b].push_back(a);
}
l=1,r=n;
while(l<=r){
    mid=(l+r)>>1;
    if(check(mid))ans=mid,r=mid-1;
    else l=mid+1;
}
printf("%d\n",ans);
}
posted @ 2019-09-25 20:02  stepsys  阅读(...)  评论(...编辑  收藏