POJ_1815

    对于问至少删掉几个点使得S、T不联通,可以将每个点拆成i、i'两个点并连一条容量为1的i->i'的边,将其他关系依次补全后求最小割即可。

    但是这个题目要求输出字典序最小的结果,那么就需要依次枚举每个点,如果删掉这个点之后最小割变小了,那么就说明这个点是最小割中的点,将其删除,否则就说名这个点不是最小割中的点,将其恢复。然后重复上面的操作就可以得到字典序最小的序列了。

#include<stdio.h>
#include<string.h>
#include<algorithm>
#define MAXN 210
#define MAXD 420
#define MAXM 80410
#define INF 0x3f3f3f3f
int N, S, T, first[MAXD], e, next[MAXM], v[MAXM], flow[MAXM], g[MAXN][MAXN];
int d[MAXD], q[MAXD], work[MAXD], del[MAXN], list[MAXN], L;
void add(int x, int y, int z)
{
    v[e] = y, flow[e] = z;
    next[e] = first[x], first[x] = e ++;    
}
void build()
{
    int i, j;
    memset(first, -1, sizeof(first[0]) * (N + 1) * 2);
    e = 0;
    for(i = 1; i <= N; i ++)
        for(j = i + 1; j <= N; j ++)
            if(g[i][j])
            {
                add(i << 1 | 1, j << 1, INF), add(j << 1, i << 1 | 1, 0);
                add(j << 1 | 1, i << 1, INF), add(i << 1, j << 1 | 1, 0);    
            }
    for(i = 1; i <= N; i ++)
        if(!del[i])
            add(i << 1, i << 1 | 1, 1), add(i << 1 | 1, i << 1, 0);    
}
void init()
{
    int i, j, k;
    for(i = 1; i <= N; i ++)
        for(j = 1; j <= N; j ++)
            scanf("%d", &g[i][j]);
}
int bfs()
{
    int i, j, rear = 0;
    memset(d, -1, sizeof(d[0]) * (N + 1) * 2);
    d[S << 1 | 1] = 0, q[rear ++] = S << 1 | 1;
    for(i = 0; i < rear; i ++)
        for(j = first[q[i]]; j != -1; j = next[j])
            if(flow[j] && d[v[j]] == -1)
            {
                d[v[j]] = d[q[i]] + 1, q[rear ++] = v[j];
                if(v[j] == T << 1) return 1;    
            }
    return 0;
}
int dfs(int cur, int a)
{
    if(cur == T << 1)
        return a;
    for(int &i = work[cur]; i != -1; i = next[i])
        if(flow[i] && d[v[i]] == d[cur] + 1)
            if(int t = dfs(v[i], std::min(flow[i], a)))
            {
                flow[i] -= t, flow[i ^ 1] += t;
                return t;    
            }    
    return 0;
}
int dinic()
{
    int ans = 0, t;
    while(bfs())
    {
        memcpy(work, first, sizeof(first[0]) * (N + 1) * 2);
        while(t = dfs(S << 1 | 1, INF))
            ans += t;    
    }
    return ans;
}
void solve()
{
    int i, j, k, pre;
    if(g[S][T])
    {
        printf("NO ANSWER!\n");
        return ;    
    }
    memset(del, 0, sizeof(del[0]) * (N + 1));
    build();
    L = pre = dinic();
    for(i = 1, j = 0; i <= N && j < L; i ++)
        if(i != S && i != T)
        {
            del[i] = 1;
            build();
            if((k = dinic()) < pre)
                pre = k, list[j ++] = i;
            else
                del[i] = 0;    
        }
    printf("%d\n", L);
    if(L)
    {
        printf("%d", list[0]);
        for(i = 1; i < L; i ++) printf(" %d", list[i]);
            printf("\n");
    }
}
int main()
{
    while(scanf("%d%d%d", &N, &S, &T) == 3)
    {
        init();
        solve();    
    }
    return 0;    
}
posted on 2012-08-08 17:32  Staginner  阅读(315)  评论(0)    收藏  举报