CF1712E2 做题记录

CF1712E2 做题记录

题目链接来源

感性理解发现满足的很多,不满足的很少,考虑不满足即 \(\text{lcm}(i,j,k)<i+j+k\) 的情况。

\(\text{lcm}(i,j,k)=x\)\(i=\dfrac{x}{a}\)\(j = \dfrac{x}{b}\)\(k=\dfrac{x}{c}\),则 \(a>b>c\)

\[\begin{aligned} &x < \dfrac{x}{a} + \dfrac{x}{b} + \dfrac{x}{c} \\ &\dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c} > 1 \\ &\dfrac{3}{c} > \dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c} > 1 \\ &\Rightarrow c < 3 \\ &\Rightarrow c = 1,2 \end{aligned} \]

\(c = 1\),有:

\[\begin{aligned} &\because c = 1 \\ &\therefore \dfrac{1}{a}+\dfrac{1}{b} > 0 \end{aligned} \]

原式恒成立!

\(c = 2\),有:

\[\begin{aligned} &\because c = 2 \\ &\therefore \dfrac{1}{a}+\dfrac{1}{b} > \dfrac{1}{2} \\ &\because \dfrac{2}{b} > \dfrac{1}{2} \\ &\therefore 2 < b < 4, b = 3 \\ &\because \dfrac{1}{a} > \dfrac{1}{6} \\ &\therefore 3 < a < 6, a = 4,5 \end{aligned} \]

带回知 \(i:j:k=3:4:6, 6:10:15\),显然在 \([l,r]\) 中这样的 \((i,j,k)\) 共有 \(\max(0, \lfloor\dfrac{r}{6}\rfloor - \lceil\dfrac{l}{3}\rceil + 1) + \max(0, \lfloor\dfrac{r}{15}\rfloor - \lceil\dfrac{l}{6}\rceil + 1)\) 个。

回去考虑 \(c = 1\) 的情况,即 \(\text{lcm}(i,j,k)=k\)

由于 \(i \mid k\)。令 \(fac_{k,u}\)\(k\) 的因数,\(1 \le u \le siz_{k}\)\(fac_{k,u} < j < k\),则 \(j\)\(siz_{k}-u-1\) 个。

于是这本质上是个带权二维数点,点是 \((fac_{k,u},k,siz_{k}-u-1)\),直接做即可。

posted @ 2025-04-12 17:11  邻补角-SSA  阅读(7)  评论(0)    收藏  举报