多线程笔记2

 

转发,请保持地址:http://blog.csdn.net/stalendp/article/details/9310171

以前学习过Java的多线程设计,出于对java多线程设计的熟悉,我把pthread的多线程方法按照java的习惯封装了一下,并写了几个例子,分享一下。

 

// ThreadHelper.h


#ifndef threadTest_ThreadHelper_h
#define threadTest_ThreadHelper_h

#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>

void msleep(unsigned sec) {
    usleep(sec*1000);
}

// 参考 http://stackoverflow.com/questions/1151582/pthread-function-from-a-class
class Thread {
protected:
    std::string name;
    pthread_t mythread;
    pthread_mutex_t mymutex;
    pthread_cond_t mycond;
    
protected:
    virtual void* run() = 0;
public:
    Thread() {
        pthread_mutex_init(&mymutex, NULL);
        pthread_cond_init(&mycond, NULL);
        char msg[50];
        sprintf(msg, "%ld", time(NULL));
        name = msg;
    }
    
    Thread(const char* _name) : name(_name) {
        pthread_mutex_init(&mymutex, NULL);
        pthread_cond_init(&mycond, NULL);
    }
    
    virtual ~Thread() {
        pthread_mutex_destroy(&mymutex);
        pthread_cond_destroy(&mycond);
    }
    
    const char* getName() {
        return name.c_str();
    }
    
    void start() {
        if ( pthread_create( &mythread, NULL, _run, this) ) {
            printf("error creating thread.");
            abort();
        }
    }
    
private:
    static void* _run(void* This) {
        return ((Thread*) This)->run();
    }
};

class Synchronizable {
protected:
    pthread_mutex_t mymutex;
    pthread_cond_t mycond;
    
public:
#define LOCK_BEGIN  pthread_mutex_lock(&mymutex)
#define LOCK_END    pthread_mutex_unlock(&mymutex)
#define WAIT        pthread_cond_wait(&mycond, &mymutex)
#define NOTIFY_ALL  pthread_cond_broadcast(&mycond);
    
public:
    Synchronizable() {
        pthread_mutex_init(&mymutex, NULL);
        pthread_cond_init(&mycond, NULL);
    }
    
    virtual ~Synchronizable() {
        pthread_mutex_destroy(&mymutex);
        pthread_cond_destroy(&mycond);
    }

};

#endif


然后给出一个生产消费者模式的例子:

 

 

#ifndef threadTest_PtProducerConsumer_h
#define threadTest_PtProducerConsumer_h

#include "ThreadHelper.h"

#include <pthread.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
#include <time.h>
#include <string>
#include <vector>
#include <sstream>

// 生产者必须将数据安全地交给消费者。虽然只是这样的问题,但当生产者与消费者
// 在不同的线程上运行时,两者的处理速度差将是最大的问题。当消费者要取数据时
// 生产者还没有建立出数据,或是生产者建立出数据时消费者的状态还没办法接受数据等。
// Producer-Consumer Pattern是在生产者和消费者之间加入一个“桥梁参与者”。
// 以这个桥梁参与者缓冲线程之间的处理速度差。

class Table : Synchronizable {
private:
    int tail, head, count;
    std::vector<std::string> buffer;
    
public:
    Table(int _count) : tail(0), head(0), count(0) {
        buffer.resize(_count);
    }
    
    void put(const char* cake) {
        LOCK_BEGIN;
        while (count >= buffer.size()) {
            printf("!!!TABLE IS FULL!!!\n");
            WAIT;
        }
        buffer[tail] = cake;
        tail = (tail+1) % buffer.size();
        count++;
        NOTIFY_ALL;
        printf("puts  %s -- size %d\n", cake, count);
        LOCK_END;
    }
    
    const char* take() {
        LOCK_BEGIN;
        while (count<=0) {
            printf("!!!NO MORE CAKES!!!\n");
            WAIT;
        }
        std::string cake = buffer[head];
        head = (head+1) % buffer.size();
        count--;
        NOTIFY_ALL;
        printf("takes %s -- size %d\n", cake.c_str(), count);
        LOCK_END;
        return cake.c_str();
    }
};

static int mid;

class MakerThread: public Thread {
private:
    Table* table;
public:
    MakerThread(const char* _name, Table* _table) : Thread(_name) {
        this->table = _table;
        srand((unsigned)time(NULL));
    }
    void* run() {
        while (true) {
            msleep(rand()%1000);
            std::stringstream ss;
            ss << "[Cake No." << nextId() << " by " << getName()  << "]";
            table->put(ss.str().c_str());
        }
        return NULL;
    }
    
    static int nextId() {
        return mid++;
    }
};

class EaterThread: public Thread {
private:
    Table* table;
public:
    EaterThread(const char* _name, Table* _table) : Thread(_name) {
        this->table = _table;
    }
    
    void* run() {
        while (true) {
            const char* cake = table->take();
//            printf("%s\n", cake);
            msleep(rand()%1000);
        }
        return NULL;
    }
};

void pcRun() {
    Table* table = new Table(3);  // 建立可以放置3个蛋糕的桌子
    (new MakerThread("MakerThread-1", table))->start();
    (new MakerThread("MakerThread-2", table))->start();
    (new MakerThread("MakerThread-3", table))->start();
    (new EaterThread("EaterThread-1", table))->start();
    (new EaterThread("EaterThread-2", table))->start();
    (new EaterThread("EaterThread-3", table))->start();
    sleep(90);
    printf("hello producer consumer");
}

#endif


参考:《Java多线程设计模式详解》

相关文章: http://blog.csdn.net/stalendp/article/details/9253665

 

 

 

posted @ 2013-07-12 18:29  爱生活,爱编程  阅读(234)  评论(0编辑  收藏  举报