luogu P3980 [NOI2008]志愿者招募

传送门

网络流又一神仙套路应用

首先考虑列不等式,设\(x_i\)为第i种人的个数,记\(b_{i,j}\)为第i种人第j天是否能工作,那么可以列出n个不等式,第j个为\(\sum_{i=1}^{m}b_{i,j}x_i\ge a_j\)

然后将这些不等式转成等式,新开变量y,则那些不等式可以写为\[\begin{cases}b_{1,1}x_1+b_{2,1}x_2...+b_{m,1}x_m=a_1+y_1\\b_{1,2}x_1+b_{2,2}x_2...+b_{m,2}x_m=a_2+y_2\\......\end{cases}\]

然后每个式子都减去上面的式子(假装最后有一个\(0=0\)的式子),然后得到\(n+1\)个等式.每个等式再移项,使得系数全为正数.我们发现每个变量分别在某个等式左边出现一次,也在某个右边出现一次.所以可以联系网络流是流入流量=流出流量的,这里把每个等式看做一个点,左边看做流入,右边看做流出.对于变量\(x_i\),从流出的点向流入的点连流量为能用的最大次数(本题为Inf),费用为单个代价的边;对于变量\(y_i\),从流出的点向流入的点连流量为能用的最大次数(本题为Inf),费用为0的边;对于常数项\(a_i\),从原点向流入点连流量\(a_i\)费用0边,从流出点向汇点连流量\(a_i\)费用0边,然后费用流求费用就好了

感性理解一下?(

#include<bits/stdc++.h>
#define LL long long
#define il inline
#define re register
#define db double

using namespace std;
const int N=1e4+10,M=1e5+10;
il int rd()
{
    int x=0,w=1;char ch=0;
    while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
    while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
    return x*w;
}
int n,m;
int a[N],b[N][3];
int ps,pt,to[M],nt[M],c[M],hd[N],tot=1;
LL w[M];
il void add(int x,int y,int z,int zz)
{
    ++tot,to[tot]=y,nt[tot]=hd[x],c[tot]=z,w[tot]= zz,hd[x]=tot;
    ++tot,to[tot]=x,nt[tot]=hd[y],c[tot]=0,w[tot]=-zz,hd[y]=tot;
}
LL di[N],ans;
int pre[N],fw[N];
bool v[N];
queue<int> q;
il bool csfl()
{
    memset(di,0x3f3f3f,sizeof(di));
    memset(fw,0,sizeof(fw));
    di[ps]=0,fw[ps]=1<<30,v[ps]=1,q.push(ps);
    while(!q.empty())
    {
        int x=q.front();
        q.pop();
        for(int i=hd[x];i;i=nt[i])
        {
            int y=to[i];
            if(c[i]>0&&di[y]>di[x]+w[i])
            {
                di[y]=di[x]+w[i];
                pre[y]=i,fw[y]=min(fw[x],c[i]);
                if(!v[y]) v[y]=1,q.push(y);
            }
        }
        v[x]=0;
    }
    if(di[pt]==di[pt+1]) return 0;
    ans+=1ll*di[pt]*fw[pt];
    int x=pt;
    while(x^ps)
    {
        int i=pre[x];
        c[i]-=fw[pt],c[i^1]+=fw[pt];
        x=to[i^1];
    }
    return 1;
}

int main()
{
    n=rd(),m=rd();
    for(int i=1;i<=n;++i) a[i]=rd();
    for(int i=1;i<=m;++i) b[i][0]=rd(),b[i][1]=rd(),b[i][2]=rd();
    ps=0,pt=n+3;
    for(int i=1;i<=m;++i) add(b[i][1]+1,b[i][0],1<<30,b[i][2]);
    for(int i=1;i<=n;++i) add(i,i+1,1<<30,0);
    for(int i=1;i<=n;++i) add(ps,i+1,a[i],0),add(i,pt,a[i],0);
    while(csfl());
    printf("%lld\n",ans);
    return 0;
}
posted @ 2019-01-14 22:25 smyjr 阅读(...) 评论(...) 编辑 收藏