03 2018 档案
摘要:之前做手写数字识别时,接触到softmax网络,知道其是全连接层,但没有搞清楚它的实现方式,今天学习Alexnet网络,又接触到了softmax,果断仔细研究研究,有了softmax,损失函数自然不可少。一起学习记录一下。 主要参考的博文:http://blog.csdn.net/u01438016
阅读全文
摘要:最近试一下kaggle的文字检测的题目,目前方向有两个ssd和cptn。直接看看不太懂,看到Alexnet是基础,今天手写一下网络,记录一下啊。 先理解下Alexnet中使用的原件和作用: 激活函数使用了relu并用了多个cpu:提高了训练速度。 重叠pool池化(不再是简单除以2的池化了,类似于卷
阅读全文
摘要:先开个标题,以后慢慢填充。 k近邻算法(knn)属于监督学习 一、 三个关键点:1、k的取值,当k值较小时,选取点较少,相当于会有在较小的范围内进行学习预测,学习误差会减小,但是估计误差会增大,因为训练样本中存在噪声,选取过小的区域,噪声干扰的权重会较大,因为影响泛化能力,k减小意味整体模型复杂,容
阅读全文

浙公网安备 33010602011771号