226. 翻转二叉树
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
TreeNode* invertTree(TreeNode* root) {
if(root == nullptr) return nullptr;
swap(root->left, root->right);
invertTree(root->left);
invertTree(root->right);
return root;
}
};
101. 对称二叉树
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
bool flag = true;
bool isSymmetric(TreeNode* root) {
if (!root) return true;
return isMirror(root->left, root->right);
}
bool isMirror(TreeNode* t1, TreeNode* t2) {
if (!t1 && !t2) return true; // 都是空,对称
if (!t1 || !t2) return false; // 只有一个空,不对称
if (t1->val != t2->val) return false; // 值不同,不对称
// 左的左 和 右的右,左的右 和 右的左 要分别镜像
return isMirror(t1->left, t2->right) && isMirror(t1->right, t2->left);
}
};
104. 二叉树的最大深度
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
void countDepth(TreeNode *root, int &result, int &count)
{
if(root == nullptr) return;
count++;
result = max(result, count);
if(root->left)
{
countDepth(root->left, result, count);
}
if(root->right)
{
countDepth(root->right, result, count);
}
count--;
}
int maxDepth(TreeNode* root) {
int result = 0, count = 0;
countDepth(root, result, count);
return result;
}
};
int maxDepth(TreeNode* root) {
return root == nullptr ? 0 : max(maxDepth(root->left), maxDepth(root->right)) + 1;
}
111. 二叉树的最小深度
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
int minDepth(TreeNode* root) {
if(root == nullptr) return 0;
int leftHeight = minDepth(root->left);
int rightHeight = minDepth(root->right);
if(root->left && root->right == nullptr)
return leftHeight + 1;
if(root->left == nullptr && root->right)
return rightHeight + 1;
else
return min(rightHeight, leftHeight) + 1;
}
};