堆,栈,内存管理, 拓展补充-Geekband




8, 堆,栈,内存管理



栈:  local objects 在离开作用域之后就会被消除. 
堆: new MyClass 一直会存在
静态对象: static local object    作用域在当前函数,其生命在整个程序结束后才会结束. 
全局对象: Global object           作用域在全局.


new函数的内部实现
e.g Complex * pc = new Complex(1,2);

分解: 
1, void* mem = operator new(sizeof(Complex));    -分配内存 使用molloc实现
2, pc = static_cast<Complex*>(mem);     - 转型
3, pc->Complex::Complex(1,2);       - 构造函数

delete函数的内部实现
e.g delete pc;

分解:
1, String::~String(pc);        -析构函数
2, operator delete(pc);      -释放内存 内部使用free实现


动态分配得到的内存块:
debug:
头尾: cookie (小甜饼干) 4x2
复数 : 8b
最终加起来得到的内存块为 52b
但是在vc下, 每个内存块分配都是16的倍数.
所以,这里需要填补(pad) 得到64


release: 

正好是16的倍数.

cookie说明:
cookie的作用是记录整块分配内存的大小.
因为都是16的倍数,所以最后有4个为是空的. 所以最后那位我们可以使用.
当最后一位是1时,说明是系统分配给我们的. 
如果我们要把内存还给系统,那么最后一位就会变成0.


vc中动态分配数组
debug:


8*3是数据
32+4是调试相关字符
4*2是cookie
最后的4是数组的大小 保存数据'3'
最后80是要向16对齐.


release:

内存泄露不是我们所以为的内存泄露:

array new 一定要搭配array delete 

e.g String* p = new String[3];

delete[] p;    -唤起3次析构函数 
delete p;      -唤起1次析构函数

无论上面哪种方式,都会删除cookie中间的那块内存. 
所以问题是出现在里面保存对象是否调用了析构函数. 
各自的析构就会负责把自己动态分配的内存删除掉. 
所以, 如果数组中的对象不含有指针.所以只用delete也是可以的,也不会造成内存泄露. 

疑问:
为什么系统不直接根据 那个'3'字节来将全部对象调用析构? 而是非得要求用户调用delete[]




9,复习String类的实现

strlen取得的长度不含'\0'

在拷贝赋值中, 返回类型尽量使用 MyClass& MyClass::operator=(const MyClass&  m2) !
而不是void MyClass::operator=(const MyClass&  m2)  
使用void在一般情况: m1 = m2 这样的一个赋值上是没有问题的. 但, 当一连串赋值的时候就必须使用返回引用了! ! !  ! 
这就贯彻了之前说过的 "调用者无需知道函数是使用什么方式传递出去的"


一定要注意 取地址符号&和引用符号&的区分! 





10, 拓展补充

static 关键字

静态数据 
MyClass{
static int count;    //-  无论创造多少个对象,  这个变量只有一份. 
static void Set_Count(int cc) { count  = cc;}
};
注意: 静态变量 一定要在类外进行定义(我们俗称初始化);
int MyClass::count = 10;    //格式一定要注意! 前面的类型一定要写!后面要不要赋值不是必要.


静态函数调用方式: 
1,通过对象来调用:
MyClass  my;
my.Set_Count(2);
2,通过类名来调用:
MyClass::Set_Count(3);


单例模式:
把构造函数放在private区内. 这样就不能通过普通模式构建对象, 此时再声明一个静态成员函数,用于返回一个实例化对象. 





8, 堆,栈,内存管理



栈:  local objects 在离开作用域之后就会被消除. 
堆: new MyClass 一直会存在
静态对象: static local object    作用域在当前函数,其生命在整个程序结束后才会结束. 
全局对象: Global object           作用域在全局.


new函数的内部实现
e.g Complex * pc = new Complex(1,2);

分解: 
1, void* mem = operator new(sizeof(Complex));    -分配内存 使用molloc实现
2, pc = static_cast<Complex*>(mem);     - 转型
3, pc->Complex::Complex(1,2);       - 构造函数

delete函数的内部实现
e.g delete pc;

分解:
1, String::~String(pc);        -析构函数
2, operator delete(pc);      -释放内存 内部使用free实现


动态分配得到的内存块:
debug:

头尾: cookie (小甜饼干) 4x2
复数 : 8b
最终加起来得到的内存块为 52b
但是在vc下, 每个内存块分配都是16的倍数.
所以,这里需要填补(pad) 得到64


release: 

正好是16的倍数.

cookie说明:
cookie的作用是记录整块分配内存的大小.
因为都是16的倍数,所以最后有4个为是空的. 所以最后那位我们可以使用.
当最后一位是1时,说明是系统分配给我们的. 
如果我们要把内存还给系统,那么最后一位就会变成0.


vc中动态分配数组
debug:

8*3是数据
32+4是调试相关字符
4*2是cookie
最后的4是数组的大小 保存数据'3'
最后80是要向16对齐.


release:


内存泄露不是我们所以为的内存泄露:

array new 一定要搭配array delete 

e.g String* p = new String[3];

delete[] p;    -唤起3次析构函数 
delete p;      -唤起1次析构函数

无论上面哪种方式,都会删除cookie中间的那块内存. 
所以问题是出现在里面保存对象是否调用了析构函数. 
各自的析构就会负责把自己动态分配的内存删除掉. 
所以, 如果数组中的对象不含有指针.所以只用delete也是可以的,也不会造成内存泄露. 

疑问:
为什么系统不直接根据 那个'3'字节来将全部对象调用析构? 而是非得要求用户调用delete[]




9,复习String类的实现

strlen取得的长度不含'\0'

在拷贝赋值中, 返回类型尽量使用 MyClass& MyClass::operator=(const MyClass&  m2) !
而不是void MyClass::operator=(const MyClass&  m2)  
使用void在一般情况: m1 = m2 这样的一个赋值上是没有问题的. 但, 当一连串赋值的时候就必须使用返回引用了! ! !  ! 
这就贯彻了之前说过的 "调用者无需知道函数是使用什么方式传递出去的"


一定要注意 取地址符号&和引用符号&的区分! 





10, 拓展补充

static 关键字

静态数据 
MyClass{
static int count;    //-  无论创造多少个对象,  这个变量只有一份. 
static void Set_Count(int cc) { count  = cc;}
};
注意: 静态变量 一定要在类外进行定义(我们俗称初始化);
int MyClass::count = 10;    //格式一定要注意! 前面的类型一定要写!后面要不要赋值不是必要.


静态函数调用方式: 
1,通过对象来调用:
MyClass  my;
my.Set_Count(2);
2,通过类名来调用:
MyClass::Set_Count(3);


单例模式:
把构造函数放在private区内. 这样就不能通过普通模式构建对象, 此时再声明一个静态成员函数,用于返回一个实例化对象. 




posted @ 2016-03-11 18:18  水蒸蛋不好吃  阅读(179)  评论(0编辑  收藏  举报