空洞卷积

引言

空洞卷积(Dilated/Atrous Convolution),广泛应用于语义分割与目标检测等任务中,语义分割中经典的deeplab系列与DUC对空洞卷积进行了深入的思考。目标检测中SSD与RFBNet,同样使用了空洞卷积

空洞卷积:在3*3卷积核中间填充0,有两种实现方式,第一,卷积核填充0,第二,输入等间隔采样。

 

 

 

标准卷积与空洞卷积在实现上基本相同,标准卷积可以看做空洞卷积的特殊形式。看到这,空洞卷积应该不那么陌生了。。

空洞卷积的作用

空洞卷积有什么作用呢?

  • 扩大感受野:在deep net中为了增加感受野且降低计算量,总要进行降采样(pooling或s2/conv),这样虽然可以增加感受野,但空间分辨率降低了。为了能不丢失分辨率,且仍然扩大感受野,可以使用空洞卷积。这在检测,分割任务中十分有用。一方面感受野大了可以检测分割大目标,另一方面分辨率高了可以精确定位目标。
  • 捕获多尺度上下文信息:空洞卷积有一个参数可以设置dilation rate,具体含义就是在卷积核中填充dilation rate-1个0,因此,当设置不同dilation rate时,感受野就会不一样,也即获取了多尺度信息。多尺度信息在视觉任务中相当重要啊。

从这里可以看出,空洞卷积可以任意扩大感受野,且不需要引入额外参数,但如果把分辨率增加了,算法整体计算量肯定会增加。

ps: 空洞卷积虽然有这么多优点,但在实际中不好优化,速度会大大折扣。

空洞卷积计算(感受野和特征图)

https://zhuanlan.zhihu.com/p/50369448

posted @ 2024-09-21 13:05  silence_cho  阅读(284)  评论(0)    收藏  举报