pytorch第66页

点击查看代码
import torch
from torch import optim, nn
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import torch.nn.functional as F
import numpy as np
from sklearn.metrics import classification_report
from PIL import Image
import time
from matplotlib import pyplot as plt

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

#数据加载
transform_train = transforms.Compose([
    transforms.RandomCrop(32, padding=4),
    transforms.RandomHorizontalFlip(),
    transforms.ToTensor(),
    transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])

transform_test = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])

# 加载CIFAR-10数据集
def load_data():
    train_dataset = datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train)
    test_dataset = datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test)

    train_loader = DataLoader(train_dataset, batch_size=128, shuffle=True, num_workers=2)
    test_loader = DataLoader(test_dataset, batch_size=128, shuffle=False, num_workers=2)

    return train_loader, test_loader, test_dataset

#定义MYVGG模型
class MYVGG(nn.Module):
    def __init__(self, num_classes=10):
        super(MYVGG, self).__init__()
        self.features = nn.Sequential(
            # Block 1
            nn.Conv2d(3, 64, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(64, 64, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(2, 2),

            # Block 2
            nn.Conv2d(64, 128, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(128, 128, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(2, 2),

            # Block 3
            nn.Conv2d(128, 256, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(256, 256, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(2, 2),

            # Block 4
            nn.Conv2d(256, 512, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(512, 512, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(2, 2),

            # Block 5
            nn.Conv2d(512, 512, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(512, 512, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(2, 2),
        )
        self.classifier = nn.Sequential(
            nn.Dropout(0.5),
            nn.Linear(512, num_classes)
        )

    def forward(self, x):
        x = self.features(x)
        x = x.view(x.size(0), -1)
        x = self.classifier(x)
        return x
    
#训练函数
model = MYVGG().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)

def train(model, train_loader, criterion, optimizer, epoch_num=50):
    model.train()
    train_loss = []
    train_acc = []
    for epoch in range(epoch_num):
        start_time = time.time()
        running_loss = 0.0
        current = 0
        total = 0
        for batch_idx, (data, target) in enumerate(train_loader):
            data, target = data.to(device), target.to(device)

            output = model(data)
            loss = criterion(output, target)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            running_loss += loss.item()
            _, predicted = torch.max(output.data, 1)
            total += target.size(0)
            current += (predicted == target).sum().item()

        epoch_loss = running_loss / len(train_loader)
        epoch_acc = 100.0 * current / total
        train_loss.append(epoch_loss)
        train_acc.append(epoch_acc)

        end_time = time.time()
        print(f"Epoch [{epoch+1}/{epoch_num}], Loss: {epoch_loss:.4f}, Acc: {epoch_acc:.2f}%, Time: {end_time-start_time:.2f}s")
    return train_loss, train_acc

#测试函数
def test(model, test_loader):
    model.eval()
    all_pred = []
    all_label = []

    with torch.no_grad():
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)
            outputs = model(data)
            _, predicted = torch.max(outputs.data, 1)
            all_pred.extend(predicted.cpu().numpy())
            all_label.extend(target.cpu().numpy())
        
        all_pred = np.array(all_pred)
        all_label = np.array(all_label)
        accuracy = (all_pred == all_label).mean()
        accuracy = 100.0 * accuracy
        print(f'测试准确率: {accuracy:.4f}%')

        print("分类效果评估:")
        target_names = [str(i) for i in range(10)]
        report = classification_report(all_label, all_pred, target_names=target_names)
        print(report)

if __name__ == '__main__':
    print(f"24信计2班 佘婷婷 2024310143102")
    print(f"device:{device}")

    epoch_num = 20

    train_loader, test_loader, test_dataset = load_data()
    train_loss, train_acc = train(model, train_loader, criterion, optimizer, epoch_num)
    test(model, test_loader)

    #绘制结果
    plt.figure(figsize=(10, 5))
    plt.subplot(1, 2, 1)
    plt.plot(range(1, epoch_num+1), train_loss)
    plt.title("Training Loss")
    plt.xlabel("Epoch")
    plt.ylabel("Loss")

    plt.subplot(1, 2, 2)
    plt.plot(range(1, epoch_num+1), train_acc)
    plt.title("Training Accuracy")
    plt.xlabel("Epoch")
    plt.ylabel("Accuracy (%)")

    plt.tight_layout()
    plt.show()

image

image

posted @ 2025-10-22 14:21  佘婷婷  阅读(2)  评论(0)    收藏  举报