点击查看代码
import torch
from torch import optim, nn
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import torch.nn.functional as F
import numpy as np
from sklearn.metrics import classification_report
from PIL import Image
import time
from matplotlib import pyplot as plt
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
#数据加载
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
# 加载CIFAR-10数据集
def load_data():
train_dataset = datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train)
test_dataset = datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test)
train_loader = DataLoader(train_dataset, batch_size=128, shuffle=True, num_workers=2)
test_loader = DataLoader(test_dataset, batch_size=128, shuffle=False, num_workers=2)
return train_loader, test_loader, test_dataset
#定义MYVGG模型
class MYVGG(nn.Module):
def __init__(self, num_classes=10):
super(MYVGG, self).__init__()
self.features = nn.Sequential(
# Block 1
nn.Conv2d(3, 64, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(64, 64, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(2, 2),
# Block 2
nn.Conv2d(64, 128, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(128, 128, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(2, 2),
# Block 3
nn.Conv2d(128, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(2, 2),
# Block 4
nn.Conv2d(256, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(2, 2),
# Block 5
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(2, 2),
)
self.classifier = nn.Sequential(
nn.Dropout(0.5),
nn.Linear(512, num_classes)
)
def forward(self, x):
x = self.features(x)
x = x.view(x.size(0), -1)
x = self.classifier(x)
return x
#训练函数
model = MYVGG().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
def train(model, train_loader, criterion, optimizer, epoch_num=50):
model.train()
train_loss = []
train_acc = []
for epoch in range(epoch_num):
start_time = time.time()
running_loss = 0.0
current = 0
total = 0
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
output = model(data)
loss = criterion(output, target)
optimizer.zero_grad()
loss.backward()
optimizer.step()
running_loss += loss.item()
_, predicted = torch.max(output.data, 1)
total += target.size(0)
current += (predicted == target).sum().item()
epoch_loss = running_loss / len(train_loader)
epoch_acc = 100.0 * current / total
train_loss.append(epoch_loss)
train_acc.append(epoch_acc)
end_time = time.time()
print(f"Epoch [{epoch+1}/{epoch_num}], Loss: {epoch_loss:.4f}, Acc: {epoch_acc:.2f}%, Time: {end_time-start_time:.2f}s")
return train_loss, train_acc
#测试函数
def test(model, test_loader):
model.eval()
all_pred = []
all_label = []
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
outputs = model(data)
_, predicted = torch.max(outputs.data, 1)
all_pred.extend(predicted.cpu().numpy())
all_label.extend(target.cpu().numpy())
all_pred = np.array(all_pred)
all_label = np.array(all_label)
accuracy = (all_pred == all_label).mean()
accuracy = 100.0 * accuracy
print(f'测试准确率: {accuracy:.4f}%')
print("分类效果评估:")
target_names = [str(i) for i in range(10)]
report = classification_report(all_label, all_pred, target_names=target_names)
print(report)
if __name__ == '__main__':
print(f"24信计2班 佘婷婷 2024310143102")
print(f"device:{device}")
epoch_num = 20
train_loader, test_loader, test_dataset = load_data()
train_loss, train_acc = train(model, train_loader, criterion, optimizer, epoch_num)
test(model, test_loader)
#绘制结果
plt.figure(figsize=(10, 5))
plt.subplot(1, 2, 1)
plt.plot(range(1, epoch_num+1), train_loss)
plt.title("Training Loss")
plt.xlabel("Epoch")
plt.ylabel("Loss")
plt.subplot(1, 2, 2)
plt.plot(range(1, epoch_num+1), train_acc)
plt.title("Training Accuracy")
plt.xlabel("Epoch")
plt.ylabel("Accuracy (%)")
plt.tight_layout()
plt.show()