3E A Simple Problem —— 数论
题目
For a given positive integer \(n\), please find the smallest positive integer \(x\) that we can find an integer \(y\) such that \(y^2 = n +x^2\).
Input
The first line is an integer \(T\), which is the the number of cases.
Then \(T\) line followed each containing an integer \(n (1<=n <= 10^9)\).
Output
For each integer \(n\), please print output the \(x\) in a single line, if \(x\) does not exit , print \(-1\) instead.
Sample Input
2
2
3
Sample Output
-1
1
题解
解题思路
我们先来推导一下
\(y^2 = n +x^2\)
\(n = y^2 - x^2\)
\(n = (y - x)(y + x)\)
\(n = ab\)
\(a = y - x, b = y + x\)
\(x = (b - a) / 2\)
所以,我们枚举n的因数,再找x的最小值
代码
#include <cstdio>
#include <algorithm>
using namespace std;
const int M = 0x7fffffff;
int t, n, ans;
int main() {
scanf("%d", &t);
while (t--) {
scanf("%d", &n);
ans = M;
for(int i = 1; i * i <= n; i++)
if (!(n % i) && !((n/i - i) % 2) && (n/i - i) / 2)
ans = min(ans, (n/i - i) / 2);
if (ans == M) puts("-1");
else printf("%d\n", ans);
}
return 0;
}

浙公网安备 33010602011771号