scala_spark实践2
参考:jianshu.com/p/9d2d225c1951
监听socket获取数据,代码如下:
这里使用nc -lk 9999 在ip为10.121.33.44的机器上发送消息
object SocketStream {
def main(args: Array[String]): Unit = {
//本地测试,设置4核
val conf = new SparkConf().setMaster("local[4]").setAppName("streaming")
//以10秒为一个批次
val ssc = new StreamingContext(conf,Seconds(10))
//接收消息
val dstream = ssc.socketTextStream("10.121.33.44",9999,StorageLevel.MEMORY_AND_DISK_SER)
//监测关键字error,出现则print
dstream.filter(_.contains("error")).foreachRDD(rdd=>{
rdd.foreach(println(_))
})
ssc.start()
ssc.awaitTermination()
}
}
从kafka读取数据,比较常用
object KafkaStream {
def main(args: Array[String]): Unit = {
//本地测试,设置4核
val conf = new SparkConf().setMaster("local[4]").setAppName("streaming")
//以10秒为一个批次
val ssc = new StreamingContext(conf,Seconds(10))
val zkQuorum = "10.22.33.44:6688,10.22.33.45:6688/kafka_cluster"
val group_id = "realtime_data"
//kafka相关参数
val kafka_param = Map[String,String](
"zookeeper.connect" ->zkQuorum,
"group.id" -> group_id,
"zookeeper.connection.timeout.ms" -> "10000",
"fetch.message.max.bytes" -> "10485760"
)
val topic = Map[String,Int]("test_topic" -> 16)
//接收消息
val dstream = KafkaUtils.createStream[String,String,StringDecoder,StringDecoder](ssc,kafka_param,topic,StorageLevel.MEMORY_AND_DISK_SER).map(_._2)
//监测关键字error,出现则print
dstream.filter(_.contains("error")).foreachRDD(rdd=>{
rdd.foreach(println(_))
})
ssc.start()
ssc.awaitTermination()
}
}

浙公网安备 33010602011771号