Tensorflow训练神经网络
以下代码摘自《Tensorflow实战Google 深度学习框架》。
由于这段代码包含了激活函数去线性化,多层神经网络,指数衰减学习率,正则化防止过拟合,滑动平均稳定模型等手段,涵盖了神经网络模型的精华,摘录于此。
注:书中的原始数据集可以在 🔗http://yann.lecun.com/exdb/mnist/ 下载
另外书中代码: cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(y, tf.argmax(y_, 1))
应改为: cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 OUTPUT_NODE = 10 LAYER1_NODE = 500 BATCH_SIZE = 100 LEARNING_RATE_BASE = 0.8 LEARNING_RATE_DECAY = 0.99 #学习率的衰减率 REGULARIZATION_RATE = 0.0001 #正则化损失函数系数 TRAINING_STEPS = 30000 MOVING_AVERAGE_DECAY = 0.99 #滑动平均衰减率 def inference(input_tensor, avg_class, weights1, biases1, weights2, biases2): if avg_class == None: layer1 = tf.nn.relu(tf.matmul(input_tensor, weights1) + biases1) return tf.matmul(layer1, weights2) + biases2 else: layer1 = tf.nn.relu(tf.matmul(input_tensor, avg_class.average(weights1)) \ + avg_class.average(biases1)) return tf.matmul(layer1, avg_class.average(weights2)) + avg_class.average(biases2) def train(mnist): x = tf.placeholder(tf.float32, [None, INPUT_NODE], name='x-input') y_ = tf.placeholder(tf.float32, [None, OUTPUT_NODE], name='y-input') weights1 = tf.Variable(tf.truncated_normal([INPUT_NODE, LAYER1_NODE], stddev=0.1)) biases1 = tf.Variable(tf.constant(0.1, shape=[LAYER1_NODE])) weights2 = tf.Variable(tf.truncated_normal([LAYER1_NODE, OUTPUT_NODE], stddev=0.1)) biases2 = tf.Variable(tf.constant(0.1, shape=[OUTPUT_NODE])) y = inference(x, None, weights1, biases1, weights2, biases2) global_step = tf.Variable(0, trainable=False) variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step) variables_averages_op = variable_averages.apply(tf.trainable_variables()) averages_y = inference(x, variable_averages, weights1, biases1, weights2, biases2) cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1)) cross_entropy_mean = tf.reduce_mean(cross_entropy) #交叉熵均值 regularizer = tf.contrib.layers.l2_regularizer(REGULARIZATION_RATE) #正则化损失函数 regularization = regularizer(weights1) + regularizer(weights2) #计算模型的正则化损失 loss = cross_entropy_mean + regularization #总损失等于交叉熵损失和正则化损失的和 #设置实属衰减的学习率,参数分别为:基础学习率,当前迭代的轮数,需要迭代的次数,学习率的衰减速度 learning_rate = tf.train.exponential_decay(LEARNING_RATE_BASE, global_step, \ mnist.train.num_examples/BATCH_SIZE, LEARNING_RATE_DECAY) train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step) #train_op = tf.group(train_step, variables_averages_op) #等价于下边两行代码 with tf.control_dependencies([train_step, variables_averages_op]): train_op = tf.no_op(name='train') correct_prediction = tf.equal(tf.arg_max(averages_y, 1), tf.arg_max(y_, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # 初始化回话并开始训练过程。 with tf.Session() as sess: #tf.global_variables_initializer().run() init_op = tf.global_variables_initializer() sess.run(init_op) validate_feed = {x: mnist.validation.images, y_: mnist.validation.labels} test_feed = {x: mnist.test.images, y_: mnist.test.labels} # 循环的训练神经网络。 for i in range(TRAINING_STEPS): if i % 1000 == 0: validate_acc = sess.run(accuracy, feed_dict=validate_feed) print("After %d training step(s), validation accuracy using average model is %g " % (i, validate_acc)) xs, ys = mnist.train.next_batch(BATCH_SIZE) sess.run(train_op, feed_dict={x: xs, y_: ys}) test_acc = sess.run(accuracy, feed_dict=test_feed) print(("After %d training step(s), test accuracy using average model is %g" % (TRAINING_STEPS, test_acc))) def main(argv=None): mnist = input_data.read_data_sets("./path/to/MNIST_data/", one_hot=True) train(mnist) if __name__ == '__main__': tf.app.run()

浙公网安备 33010602011771号