1 Help on built-in module math:
2 NAME
3 math
4 DESCRIPTION
5 This module is always available. It provides access to the
6 mathematical functions defined by the C standard.
7 FUNCTIONS
8 acos(...)
9 acos(x)
10
11 Return the arc cosine (measured in radians) of x.
12
13 acosh(...)
14 acosh(x)
15
16 Return the inverse hyperbolic cosine of x.
17
18 asin(...)
19 asin(x)
20
21 Return the arc sine (measured in radians) of x.
22
23 asinh(...)
24 asinh(x)
25
26 Return the inverse hyperbolic sine of x.
27
28 atan(...)
29 atan(x)
30
31 Return the arc tangent (measured in radians) of x.
32
33 atan2(...)
34 atan2(y, x)
35
36 Return the arc tangent (measured in radians) of y/x.
37 Unlike atan(y/x), the signs of both x and y are considered.
38
39 atanh(...)
40 atanh(x)
41
42 Return the inverse hyperbolic tangent of x.
43
44 ceil(...)
45 ceil(x)
46
47 Return the ceiling of x as an Integral.
48 This is the smallest integer >= x.
49
50 copysign(...)
51 copysign(x, y)
52
53 Return a float with the magnitude (absolute value) of x but the sign
54 of y. On platforms that support signed zeros, copysign(1.0, -0.0)
55 returns -1.0.
56
57 cos(...)
58 cos(x)
59
60 Return the cosine of x (measured in radians).
61
62 cosh(...)
63 cosh(x)
64
65 Return the hyperbolic cosine of x.
66
67 degrees(...)
68 degrees(x)
69
70 Convert angle x from radians to degrees.
71
72 erf(...)
73 erf(x)
74
75 Error function at x.
76
77 erfc(...)
78 erfc(x)
79
80 Complementary error function at x.
81
82 exp(...)
83 exp(x)
84
85 Return e raised to the power of x.
86
87 expm1(...)
88 expm1(x)
89
90 Return exp(x)-1.
91 This function avoids the loss of precision involved in the direct evaluation of exp(x)-1 for small x.
92
93 fabs(...)
94 fabs(x)
95
96 Return the absolute value of the float x.
97
98 factorial(...)
99 factorial(x) -> Integral
100
101 Find x!. Raise a ValueError if x is negative or non-integral.
102
103 floor(...)
104 floor(x)
105
106 Return the floor of x as an Integral.
107 This is the largest integer <= x.
108
109 fmod(...)
110 fmod(x, y)
111
112 Return fmod(x, y), according to platform C. x % y may differ.
113
114 frexp(...)
115 frexp(x)
116
117 Return the mantissa and exponent of x, as pair (m, e).
118 m is a float and e is an int, such that x = m * 2.**e.
119 If x is 0, m and e are both 0. Else 0.5 <= abs(m) < 1.0.
120
121 fsum(...)
122 fsum(iterable)
123
124 Return an accurate floating point sum of values in the iterable.
125 Assumes IEEE-754 floating point arithmetic.
126
127 gamma(...)
128 gamma(x)
129
130 Gamma function at x.
131
132 gcd(...)
133 gcd(x, y) -> int
134 greatest common divisor of x and y
135
136 hypot(...)
137 hypot(x, y)
138
139 Return the Euclidean distance, sqrt(x*x + y*y).
140
141 isclose(...)
142 isclose(a, b, *, rel_tol=1e-09, abs_tol=0.0) -> bool
143
144 Determine whether two floating point numbers are close in value.
145
146 rel_tol
147 maximum difference for being considered "close", relative to the
148 magnitude of the input values
149 abs_tol
150 maximum difference for being considered "close", regardless of the
151 magnitude of the input values
152
153 Return True if a is close in value to b, and False otherwise.
154
155 For the values to be considered close, the difference between them
156 must be smaller than at least one of the tolerances.
157
158 -inf, inf and NaN behave similarly to the IEEE 754 Standard. That
159 is, NaN is not close to anything, even itself. inf and -inf are
160 only close to themselves.
161
162 isfinite(...)
163 isfinite(x) -> bool
164
165 Return True if x is neither an infinity nor a NaN, and False otherwise.
166
167 isinf(...)
168 isinf(x) -> bool
169
170 Return True if x is a positive or negative infinity, and False otherwise.
171
172 isnan(...)
173 isnan(x) -> bool
174
175 Return True if x is a NaN (not a number), and False otherwise.
176
177 ldexp(...)
178 ldexp(x, i)
179
180 Return x * (2**i).
181
182 lgamma(...)
183 lgamma(x)
184
185 Natural logarithm of absolute value of Gamma function at x.
186
187 log(...)
188 log(x[, base])
189
190 Return the logarithm of x to the given base.
191 If the base not specified, returns the natural logarithm (base e) of x.
192
193 log10(...)
194 log10(x)
195
196 Return the base 10 logarithm of x.
197
198 log1p(...)
199 log1p(x)
200
201 Return the natural logarithm of 1+x (base e).
202 The result is computed in a way which is accurate for x near zero.
203
204 log2(...)
205 log2(x)
206
207 Return the base 2 logarithm of x.
208
209 modf(...)
210 modf(x)
211
212 Return the fractional and integer parts of x. Both results carry the sign
213 of x and are floats.
214
215 pow(...)
216 pow(x, y)
217
218 Return x**y (x to the power of y).
219
220 radians(...)
221 radians(x)
222
223 Convert angle x from degrees to radians.
224
225 sin(...)
226 sin(x)
227
228 Return the sine of x (measured in radians).
229
230 sinh(...)
231 sinh(x)
232
233 Return the hyperbolic sine of x.
234
235 sqrt(...)
236 sqrt(x)
237
238 Return the square root of x.
239
240 tan(...)
241 tan(x)
242
243 Return the tangent of x (measured in radians).
244
245 tanh(...)
246 tanh(x)
247
248 Return the hyperbolic tangent of x.
249
250 trunc(...)
251 trunc(x:Real) -> Integral
252
253 Truncates x to the nearest Integral toward 0. Uses the __trunc__ magic method.
254 DATA
255 e = 2.718281828459045
256 inf = inf
257 nan = nan
258 pi = 3.141592653589793
259 tau = 6.283185307179586
260 FILE
261 (built-in)