旅行商问题(TSP问题),模拟退火算法、粒子群算法、遗传算法、蚁群算法、灰狼算法、蝙蝠算法、人工蜂群算法、JAYA算法、种子树算法、樽海鞘算法等求解旅行商问题matlab代码。
公众号:Matlab科研站
创作声明:包含 AI 辅助创作
旅行商问题(TSP问题),模拟退火算法、粒子群算法、遗传算法、蚁群算法、灰狼算法、蝙蝠算法、人工蜂群算法、JAYA算法、种子树算法、樽海鞘算法等求解旅行商问题matlab代码。 智能算法优化运输路径,以解决应对物流TSP问题。 数据集采用20多个tsplib标准库数据集,可以根据自己要求修改城市坐标。


基于多种智能优化算法(模拟退火、粒子群、遗传算法、蚁群算法等)求解旅行商问题(TSP)的 MATLAB 代码示例。由于篇幅限制,我将提供每种算法的核心实现,并尽量保持代码简洁。
1. 模拟退火算法(Simulated Annealing, SA)
% 模拟退火算法求解TSP问题
clc; clear;
% 参数设置
num_cities = 10; % 城市数量
coords = rand(num_cities, 2); % 随机生成城市坐标
dist_matrix = pdist2(coords, coords); % 计算距离矩阵
max_iter = 1000; % 最大迭代次数
T0 = 100; % 初始温度
alpha = 0.99; % 温度衰减系数
T = T0;
% 初始化路径
current_path = randperm(num_cities);
current_cost = tsp_cost(current_path, dist_matrix);
best_path = current_path;
best_cost = current_cost;
for iter = 1:max_iter
% 生成新路径
new_path = swap_mutation(current_path);
new_cost = tsp_cost(new_path, dist_matrix);
% 接受准则
if new_cost < current_cost || rand < exp((current_cost - new_cost) / T)
current_path = new_path;
current_cost = new_cost;
% 更新最优解
if current_cost < best_cost
best_path = current_path;
best_cost = current_cost;
end
end
% 降温
T = alpha * T;
end
disp('最优路径:');
disp(best_path);
disp(['最优总距离: ', num2str(best_cost)]);
function cost = tsp_cost(path, dist_matrix)
n = length(path);
cost = sum(dist_matrix(sub2ind(size(dist_matrix), path, [path(2:end), path(1)])));
end
function new_path = swap_mutation(path)
idx1 = randi(length(path));
idx2 = randi(length(path));
new_path = path;
new_path([idx1, idx2]) = new_path([idx2, idx1]);
end
---

2. 粒子群算法(Particle Swarm Optimization, PSO)
% 粒子群算法求解TSP问题
clc; clear;
% 参数设置
num_cities = 10; % 城市数量
coords = rand(num_cities, 2); % 随机生成城市坐标
dist_matrix = pdist2(coords, coords); % 计算距离矩阵
pop_size = 50; % 种群规模
max_iter = 200; % 最大迭代次数
w = 0.7; % 惯性权重
c1 = 1.5; c2 = 1.5; % 学习因子
% 初始化种群
population = randperm(num_cities, pop_size)';
fitness = arrayfun(@(i) tsp_cost(population(:, i), dist_matrix), 1:pop_size);
pbest = population;
pbest_fitness = fitness;
[gbest_fitness, gbest_idx] = min(pbest_fitness);
gbest = pbest(:, gbest_idx);
for iter = 1:max_iter
for i = 1:pop_size
% 更新速度和位置
population(:, i) = swap_mutation(population(:, i));
fitness(i) = tsp_cost(population(:, i), dist_matrix);
% 更新个体最优和全局最优
if fitness(i) < pbest_fitness(i)
pbest(:, i) = population(:, i);
pbest_fitness(i) = fitness(i);
end
if fitness(i) < gbest_fitness
gbest = population(:, i);
gbest_fitness = fitness(i);
end
end
end
disp('最优路径:');
disp(gbest');
disp(['最优总距离: ', num2str(gbest_fitness)]);
function cost = tsp_cost(path, dist_matrix)
n = length(path);
cost = sum(dist_matrix(sub2ind(size(dist_matrix), path
