放弃Segment分段锁,引入重级锁synchronized,性能反而高?(引用)
放弃Segment分段锁,引入重级锁synchronized,性能反而高?
参考:https://my.oschina.net/dabiaoge/blog/1613180
如题:前两天看到两篇比较好的文章,尤其是第一篇,讲的是JDK1.8中ConcurrentHashMap,比较透彻。 https://my.oschina.net/pingpangkuangmo/blog/817973?p=1&temp=1516863802898#blog-comments-list
http://blog.csdn.net/mian_csdn/article/details/70185104
但是很多人不明白为什么Doug Lea在JDK1.8为什么要做这么大变动,使用重级锁synchronized,性能反而更高,原因如下。(最近忙,没时间整理,简单记录下,见谅。。。)
- jdk1.8中锁的粒度更细了。 jdk1.7中Segment是一个继承了ReentrantLock的分段锁,在每次put操作时,是将整个Segment分段里面的transient volatile HashEntry<K,V>[] table 整个锁住,而Segment的个数在初始的时候就确定了,即使Map进行扩容也不会增加Segment的个数,所以jdk1.7中ConcurrentHashMap 的concurrentLevel(并发数)基本上是固定的。具体可以看JDK1.7的源码
static final class Segment<K,V> extends ReentrantLock implements Serializable {
/**
* The per-segment table. Elements are accessed via
* entryAt/setEntryAt providing volatile semantics.
*/
transient volatile HashEntry<K,V>[] table;
Segment(float lf, int threshold, HashEntry<K,V>[] tab) {
this.loadFactor = lf;
this.threshold = threshold;
this.table = tab;
}
final V put(K key, int hash, V value, boolean onlyIfAbsent) {
HashEntry<K,V> node = tryLock() ? null :
scanAndLockForPut(key, hash, value);
V oldValue;
try {
HashEntry<K,V>[] tab = table;
int index = (tab.length - 1) & hash;
HashEntry<K,V> first = entryAt(tab, index);
for (HashEntry<K,V> e = first;;) {
if (e != null) {
K k;
if ((k = e.key) == key ||
(e.hash == hash && key.equals(k))) {
oldValue = e.value;
if (!onlyIfAbsent) {
e.value = value;
++modCount;
}
break;
}
e = e.next;
}
else {
if (node != null)
node.setNext(first);
else
node = new HashEntry<K,V>(hash, key, value, first);
int c = count + 1;
if (c > threshold && tab.length < MAXIMUM_CAPACITY)
rehash(node);
else
setEntryAt(tab, index, node);
++modCount;
count = c;
oldValue = null;
break;
}
}
} finally {
unlock();
}
return oldValue;
}
@SuppressWarnings("unchecked")
private void rehash(HashEntry<K,V> node) {
HashEntry<K,V>[] oldTable = table;
int oldCapacity = oldTable.length;
int newCapacity = oldCapacity << 1;
threshold = (int)(newCapacity * loadFactor);
HashEntry<K,V>[] newTable =
(HashEntry<K,V>[]) new HashEntry[newCapacity];
int sizeMask = newCapacity - 1;
for (int i = 0; i < oldCapacity ; i++) {
HashEntry<K,V> e = oldTable[i];
if (e != null) {
HashEntry<K,V> next = e.next;
int idx = e.hash & sizeMask;
if (next == null) // Single node on list
newTable[idx] = e;
else { // Reuse consecutive sequence at same slot
HashEntry<K,V> lastRun = e;
int lastIdx = idx;
for (HashEntry<K,V> last = next;
last != null;
last = last.next) {
int k = last.hash & sizeMask;
if (k != lastIdx) {
lastIdx = k;
lastRun = last;
}
}
newTable[lastIdx] = lastRun;
// Clone remaining nodes
for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
V v = p.value;
int h = p.hash;
int k = h & sizeMask;
HashEntry<K,V> n = newTable[k];
newTable[k] = new HashEntry<K,V>(h, p.key, v, n);
}
}
}
}
int nodeIndex = node.hash & sizeMask; // add the new node
node.setNext(newTable[nodeIndex]);
newTable[nodeIndex] = node;
table = newTable;
}
private HashEntry<K,V> scanAndLockForPut(K key, int hash, V value) {
HashEntry<K,V> first = entryForHash(this, hash);
HashEntry<K,V> e = first;
HashEntry<K,V> node = null;
int retries = -1; // negative while locating node
while (!tryLock()) { //这里会自旋,一致尝试去获取锁
HashEntry<K,V> f; // to recheck first below
if (retries < 0) {
if (e == null) {
if (node == null) // speculatively create node
node = new HashEntry<K,V>(hash, key, value, null);
retries = 0;
}
else if (key.equals(e.key))
retries = 0;
else
e = e.next;
}
else if (++retries > MAX_SCAN_RETRIES) {
lock();
break;
}
else if ((retries & 1) == 0 &&
(f = entryForHash(this, hash)) != first) {
e = first = f; // re-traverse if entry changed
retries = -1;
}
}
return node;
}
- 反观jdk1.8中,只有一个transient volatile Node<K,V>[] table; 整个数组,数组里面的元素,链表或红黑树的next节点都使用了volatile来保证对线程的可见性,jdk1.8中每次put操作时,先判断改table数组是否有元素,如果没有则采用CAS+while自旋来进行CAS put,如果该table数组中有元素,则把该Node<k,v> f 元素取出来,加上synchronized(f),只是锁住了数组中的单个元素,再进行put操作,所以jdk1.8中的concurrentLevel是和数组大小保持一致的,每次扩容,并发度扩大一倍。具体可以看源码:
/** Implementation for put and putIfAbsent */
final V putVal(K key, V value, boolean onlyIfAbsent) {
if (key == null || value == null) throw new NullPointerException();
int hash = spread(key.hashCode());
int binCount = 0;
for (Node<K,V>[] tab = table;;) {
Node<K,V> f; int n, i, fh;
if (tab == null || (n = tab.length) == 0)
tab = initTable();
else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
if (casTabAt(tab, i, null,
new Node<K,V>(hash, key, value, null)))
break; // no lock when adding to empty bin,这里使用CAS+while自旋操作
}
else if ((fh = f.hash) == MOVED)
tab = helpTransfer(tab, f);
else {
V oldVal = null;
synchronized (f) { //这里是锁住数组中的某个Node<k,v> f 元素,而非整个数组
if (tabAt(tab, i) == f) {
if (fh >= 0) {
binCount = 1;
for (Node<K,V> e = f;; ++binCount) {
K ek;
if (e.hash == hash &&
((ek = e.key) == key ||
(ek != null && key.equals(ek)))) {
oldVal = e.val;
if (!onlyIfAbsent)
e.val = value;
break;
}
Node<K,V> pred = e;
if ((e = e.next) == null) {
pred.next = new Node<K,V>(hash, key,
value, null);
break;
}
}
}
else if (f instanceof TreeBin) {
Node<K,V> p;
binCount = 2;
if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
value)) != null) {
oldVal = p.val;
if (!onlyIfAbsent)
p.val = value;
}
}
}
}
if (binCount != 0) {
if (binCount >= TREEIFY_THRESHOLD)
treeifyBin(tab, i);
if (oldVal != null)
return oldVal;
break;
}
}
}
addCount(1L, binCount);
return null;
}
- 红-黑树的引入,对链表的优化使得hash冲突时的put和get效率更高
- 获得JVM的支持 ,ReentrantLock毕竟是API这个级别的,后续的性能优化空间很小。 synchronized则是JVM直接支持的,JVM能够在运行时作出相应的优化措施:锁粗化、锁消除、锁自旋等等。这就使得synchronized能够随着JDK版本的升级而不改动代码的前提下获得性能上的提升。

浙公网安备 33010602011771号