数学之美番外篇:平凡而又神奇的贝叶斯方法
摘要:概率论只不过是把常识用数学公式表达了出来。——拉普拉斯记得读本科的时候,最喜欢到城里的计算机书店里面去闲逛,一逛就是好几个小时;有一次,在书店看到一本书,名叫贝叶斯方法。当时数学系的课程还没有学到概率统计。我心想,一个方法能够专门写出一本书来,肯定很牛逼。后来,我发现当初的那个朴素归纳推理成立了——这果然是个牛逼的方法。——题记目录0. 前言 1. 历史 1.1 一个例子:自然语言的二义性 1.2 贝叶斯公式 2. 拼写纠正 3. 模型比较与贝叶斯奥卡姆剃刀 3.1 再访拼写纠正 3.2 模型比较理论(Model Comparasion)与贝叶斯奥卡姆剃刀(Bayesian Occam’s R
阅读全文
posted @
2011-03-17 19:02
混吃等死的猪
阅读(265)
推荐(2)
关联规则(apriori algorithm)(1)
摘要:关联规则的目的在于在一个数据集中找出项之间的关系,也称之为购物蓝分析 (market basket analysis)。例如,购买鞋的顾客,有10%的可能也会买袜子,60%的买面包的顾客,也会买牛奶。这其中最有名的例子就是"尿布和啤酒"的故事了。 关联规则的应用场合。在商业销售上,关联规则可用于交叉销售,以得到更大的收入;在保险业务方面,如果出现了不常见的索赔要求组合,则可能为欺诈,需要作进一步的调查。在医疗方面,可找出可能的治疗组合;在银行方面,对顾客进行分析,可以推荐感兴趣的服务等等。 Apriori algorithm是关联规则里一项基本算法。由Rakesh Agrawal 在 1994
阅读全文
posted @
2011-01-25 19:10
混吃等死的猪
阅读(458)
推荐(0)
weka简介和回归-----转自chinakdd
摘要:什么是数据挖掘?数据挖掘,就其核心而言,是指将大量数据转变为有实际意义的模式和规则。并且,它还可以分为两种类型:直接的和间接的。在 直接的 数据挖掘中,您会尝试预测一个特定的数据点 — 比如,以给定的一个房子的售价来预测邻近地区内的其他房子的售价。 在 间接的 数据挖掘中,您会尝试创建数据组或找到现有数据内的模式 — 比如,创建 “中产阶级妇女”的人群。实际上,每次的美国人口统计都是在进行数据挖掘,政府想要收集每个国民的数据并将它转变为有用信息。现代的数据挖掘开始于 20 世纪 90 年代,那时候计算的强大以及计算和存储的成本均到达了一种很高的程度,各公司开始可以自己进行计算和存储,而无需再借
阅读全文
posted @
2010-12-10 12:45
混吃等死的猪
阅读(1248)
推荐(1)