# [2018HN省队集训D1T3] Or

## 题意

• 所有值在 $$[1,2^k)$$
• 前缀或的值严格递增

$$n,k\le 3\times 10^4$$

## 题解

$dp_{i,j}=\sum_{k=1}^j {j\choose k} dp_{i-1,j-k}2^{j-k}$

$\text{Ans}=\sum_{i=1}^k{k\choose i}dp_{n,i}$

$dp_{i,j}=\sum_{k=1}^j{j\choose k} dp_{i-m,j-k}dp_{m,k}2^{(j-k)m}$

### 参考代码

#include <bits/stdc++.h>

const int G=3;
const int DFT=1;
const int IDFT=-1;
const int MAXN=1e5+10;
const int MOD=998244353;
const int PHI=MOD-1;

int n;
int k;
int dp[MAXN];
int pw[MAXN];
int tr[MAXN];
int tx[MAXN];
int rev[MAXN];
int fact[MAXN];

int C(int,int);
int Pow(int,int,int);
void NTT(int*,int,int);

int main(){
scanf("%d%d",&n,&k);
pw[0]=1;
fact[0]=1;
for(int i=1;i<=k;i++){
pw[i]=(pw[i-1]<<1)%MOD;
fact[i]=1ll*fact[i-1]*i%MOD;
tr[i]=Pow(fact[i],MOD-2,MOD);
}
int bln=1,bct=0;
while(bln<=k*2){
bln<<=1;
++bct;
}
for(int i=0;i<bln;i++)
rev[i]=(rev[i>>1]>>1)|((i&1)<<(bct-1));
NTT(tr,bln,DFT);
dp[0]=1;
int cur=1;
while(n>0){
if(n&1){
for(int i=k+1;i<bln;i++)
dp[i]=0;
for(int i=0;i<=k;i++)
dp[i]=1ll*dp[i]*Pow(pw[i],cur,MOD)%MOD;
NTT(dp,bln,DFT);
for(int i=0;i<bln;i++)
dp[i]=1ll*dp[i]*tr[i]%MOD;
NTT(dp,bln,IDFT);
}
NTT(tr,bln,IDFT);
for(int i=k+1;i<bln;i++)
tx[i]=0;
for(int i=0;i<=k;i++)
tx[i]=1ll*tr[i]*Pow(pw[i],cur,MOD)%MOD;
NTT(tx,bln,DFT);
NTT(tr,bln,DFT);
for(int i=0;i<bln;i++)
tr[i]=1ll*tr[i]*tx[i]%MOD;
NTT(tr,bln,IDFT);
for(int i=k+1;i<bln;i++)
tr[i]=0;
NTT(tr,bln,DFT);
n>>=1;
cur<<=1;
}
int ans=0;
for(int i=0;i<=k;i++)
(ans+=1ll*dp[i]*fact[i]%MOD*C(k,i)%MOD)%=MOD;
printf("%d\n",ans);
return 0;
}

int C(int n,int m){
return n<0||m<0||n<m?0:1ll*fact[n]*Pow(fact[m],MOD-2,MOD)%MOD*Pow(fact[n-m],MOD-2,MOD)%MOD;
}

void NTT(int* a,int len,int opt){
for(int i=0;i<len;i++)
if(rev[i]>i)
std::swap(a[i],a[rev[i]]);
for(int i=1;i<len;i<<=1){
int step=i<<1;
int wn=Pow(G,(opt*PHI/step+PHI)%PHI,MOD);
for(int j=0;j<len;j+=step){
int w=1;
for(int k=0;k<i;k++,w=1ll*w*wn%MOD){
int x=a[j+k];
int y=1ll*a[j+k+i]*w%MOD;
a[j+k]=(x+y)%MOD;
a[j+k+i]=(x-y+MOD)%MOD;
}
}
}
if(opt==IDFT){
int inv=Pow(len,MOD-2,MOD);
for(int i=0;i<len;i++)
a[i]=1ll*a[i]*inv%MOD;
}
}

inline int Pow(int a,int n,int p){
int ans=1;
while(n>0){
if(n&1)
ans=1ll*a*ans%p;
a=1ll*a*a%p;
n>>=1;
}
return ans;
}



posted @ 2019-02-28 16:29  rvalue  阅读(271)  评论(0编辑  收藏  举报