【机器学习】回归分析、过拟合、分类

一、Linear Regression

线性回归是相对简单的一种,表达式如下

其中,θ0表示bias,其他可以看做weight,可以转换为如下形式

为了更好回归,定义损失函数,并尽量缩小这个函数值,使用MSE方法(mean square equal)

缩小方法采用梯度下降法,即不断地向现在站立的山坡往下走,走的速度就是学习速率η(learning rate),太小耗尽计算资源,太大走过了山谷。

(1)Normal Equation

 1 from sklearn.linear_model import LinearRegression
 2 import numpy as np
 3 import matplotlib.pyplot as plt
 4 
 5 # 数据集
 6 X = 2*np.random.rand(100, 1)
 7 y = 4+3*X+np.random.randn(100,1)
 8 
 9 # X每个元素加1
10 X_b = np.c_[np.ones((100,1)), X]
11 theta_best = np.linalg.inv(X_b.T.dot(X_b)).dot(X_b.T).dot(y)
12 
13 # 训练
14 lin_reg = LinearRegression()
15 lin_reg.fit(X, y)
16 print(lin_reg.intercept_, lin_reg.coef_)
17 
18 # 测试数据
19 X_new = np.array([[0],[2]])
20 X_new_b = np.c_[np.ones((2,1)), X_new]
21 y_predict = X_new_b.dot(theta_best)
22 print(y_predict)
23 
24 # 画图
25 plt.plot(X_new, y_predict, "r-")
26 plt.plot(X, y, "b.")
27 plt.axis([0,2,0,15])
28 plt.show()

(2)Batch Gradient Descent

  基本算是遍历了所有数据,不适用于数据规模大的数据

1 # BGD梯度下降
2 eta = 0.1
3 n_iterations = 1000
4 m = 100
5 theta = np.random.randn(2,1)
6 for iteration in range(n_iterations):
7     gradients = 2/m * X_b.T.dot(X_b.dot(theta) - y)
8     theta = theta - eta*gradients
9 print(theta)

可以看出,结果是差不多的

(3)Stochastic Gradient Descent

  可以避免局部最优结果,但是会震来震去。为了防止这种震荡,让学习速率η不断减小(类似模拟退火)

# SGD梯度下降
m = 100
n_epochs = 50
t0, t1 = 5, 50 # η初始值0.1
def learning_schedule(t):
    return t0 / (t + t1)

theta = np.random.randn(2,1) # random initialization
for epoch in range(n_epochs):
    for i in range(m):
        random_index = np.random.randint(m)
        xi = X_b[random_index:random_index+1]
        yi = y[random_index:random_index+1]
        gradients = 2 * xi.T.dot(xi.dot(theta) - yi)
        eta = learning_schedule(epoch * m + i)
        theta = theta - eta * gradients
print(theta)

# sklearn 提供了SGDRegressor的方法
from sklearn.linear_model import SGDRegressor
sgd_reg = SGDRegressor(max_iter=50, penalty=None, eta0=0.1)
sgd_reg.fit(X, y.ravel())
print(sgd_reg.intercept_, sgd_reg.coef_)

(4)Min-batch Gradient Descent

  使用小批随机数据,结合SGD与BGD优点

以下是各种方法对比

二、Polynomial Regression

但有的时候,y本身是由x取平方所得,无法找出来一条合适的线性回归线来拟合数据,该怎么办呢?

我们可以尝试将x取平方,取3次方等方法,多加尝试

三、误差分析

四、防止过拟合

用惩罚系数(penalty),即正则项(regularize the model)

(1)岭回归ridge regression

  控制参数自由度,减少模型复杂度。所控制的α=α,越大控制结果越强

 优势:直接用公式可以计算出结果

 

1 from sklearn.linear_model import Ridge
2 ridge_reg = Ridge(alpha=1, solver="cholesky")
3 ridge_reg.fit(X, y)

 

(2)Lasso Regression(least absolute shrinkage and selection operator regression)

正则化项同ridge regression不同,正则化的控制更强

 

1 # Lasso Regression
2 from sklearn.linear_model import Lasso
3 lasso_reg = Lasso(alpha=0.1)
4 lasso_reg.fit(X, y)
5 lasso_reg.predict([[1.5]])

对于高阶degree regularize尤为明显,是一个sparse model,很多高阶参数项成为了0

 (3)Elastic Net(一般推荐使用)

 相当于ridge和lasso regression的结合,用超参数r来控制其平衡

1 # Elastic Net
2 from sklearn.linear_model import ElasticNet
3 elastic_net = ElasticNet(alpha=0.1, l1_ratio=0.5)
4 elastic_net.fit(X, y)

(4)Early Stopping

找到开始上升的点,从那里停止(整体找到,取最优的)

 1 from sklearn.base import clone
 2 sgd_reg = SGDRegressor(n_iter=1, warm_start=True, penalty=None,
 3                                              learning_rate="constant", eta0=0.0005)
 4 minimum_val_error = float("inf")
 5 best_epoch = None
 6 best_model = None
 7 for epoch in range(1000):
 8     sgd_reg.fit(X_train_poly_scaled, y_train) # continues where it left off
 9     y_val_predict = sgd_reg.predict(X_val_poly_scaled)
10     val_error = mean_squared_error(y_val_predict, y_val)
11     if val_error < minimum_val_error:
12         minimum_val_error = val_error
13         best_epoch = epoch
14         best_model = clone(sgd_reg)
View Code

五、Logistic Regression(可用作分类)

(使用sigmod函数,y在(0,1)之间)

定义cost function,由于p在(0,1)之间,故最前面加一个符号,保证代价始终为正的。p值越大,整体cost越小,预测的越对

不存在解析解,故用偏导数计算

以Iris花的种类划分为例

 1 import matplotlib.pyplot as plt
 2 from sklearn import datasets
 3 iris = datasets.load_iris()
 4 print(list(iris.keys()))
 5 # ['DESCR', 'data', 'target', 'target_names', 'feature_names']
 6 X = iris["data"][:, 3:] # petal width
 7 y = (iris["target"] == 2).astype(np.int) # 1 if Iris-Virginica, else 0
 8 
 9 from sklearn.linear_model import LogisticRegression
10 log_reg = LogisticRegression()
11 log_reg.fit(X, y)
12 X_new = np.linspace(0, 3, 1000).reshape(-1, 1)
13 # estimated probabilities for flowers with petal widths varying from 0 to 3 cm:
14 y_proba = log_reg.predict_proba(X_new)
15 
16 plt.plot(X_new, y_proba[:, 1], "g-", label="Iris-Virginica")
17 plt.plot(X_new, y_proba[:, 0], "b--", label="Not Iris-Virginica")
18 plt.show()
19 # + more Matplotlib code to make the image look pretty

六、Softmax Regression

可以用做多分类

使用交叉熵

  

X = iris["data"][:, (2, 3)] # petal length, petal width
y = iris["target"]
softmax_reg = LogisticRegression(multi_class="multinomial",solver="lbfgs", C=10)
softmax_reg.fit(X, y)

print(softmax_reg.predict([[5, 2]]))
# array([2])
print(softmax_reg.predict_proba([[5, 2]]))
# array([[ 6.33134078e-07, 5.75276067e-02, 9.42471760e-01]])

 

 

 

 

 

 

 

 

posted @ 2017-10-23 09:53  水奈樾  阅读(2653)  评论(1编辑  收藏  举报