IDEA调试运行WordCount程序
IDEA调试运行WordCount程序
先给出WordCount代码
import java.io.IOException;
import java.util.Iterator;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
public class WordCount {
public WordCount() {
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = (new GenericOptionsParser(conf, args)).getRemainingArgs();
if(otherArgs.length < 2) {
System.err.println("Usage: wordcount <in> [<in>...] <out>");
System.exit(2);
}
Job job = Job.getInstance(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(WordCount.TokenizerMapper.class);
job.setCombinerClass(WordCount.IntSumReducer.class);
job.setReducerClass(WordCount.IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
for(int i = 0; i < otherArgs.length - 1; ++i) {
FileInputFormat.addInputPath(job, new Path(otherArgs[i]));
}
FileOutputFormat.setOutputPath(job, new Path(otherArgs[otherArgs.length - 1]));
System.exit(job.waitForCompletion(true)?0:1);
}
public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable> {
private static final IntWritable one = new IntWritable(1);
private Text word = new Text();
public TokenizerMapper() {
}
@Override
public void map(Object key, Text value, Mapper<Object, Text, Text, IntWritable>.Context context) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while(itr.hasMoreTokens()) {
this.word.set(itr.nextToken());
context.write(this.word, one);
}
}
}
public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
private IntWritable result = new IntWritable();
public IntSumReducer() {
}
@Override
public void reduce(Text key, Iterable<IntWritable> values, Reducer<Text, IntWritable, Text, IntWritable>.Context context) throws IOException, InterruptedException {
int sum = 0;
IntWritable val;
for(Iterator i$ = values.iterator(); i$.hasNext(); sum += val.get()) {
val = (IntWritable)i$.next();
}
this.result.set(sum);
context.write(key, this.result);
}
}
}
我们创建项目后发现该代码中的很多需要的类没有,这时候就需要手工导入了
将hadoop根目录路径为hadoop/share/hadoop/common中的
hadoop-common-3.3.5.jar和haoop-nfs-3.3.5.jar
/hadoop/share/hadoop/common/lib目录下的所有JAR包
/hadoop/share/hadoop/mapreduce”目录下的所有JAR包
导入项目中,发现此时WordCount程序已经没有报错了,接下来试着运行
出现
Usage: wordcount <in> [<in>...] <out>
说明程序正常运行
接下来我们在idea中将我们的项目导出为jar包
然后回到hadoop环境,创建一个myapp目录
cd /opt/hadoop-2.7.4#
mkdir myapp
将我们的jar导入该文件夹,然后启动ssh
/usr/sbin/sshd
启动hdfs
/opt/hadoop-2.7.4/sbin/start-dfs.sh
创建input和output
hadoop fs -mkdir /input
hadoop fs -mkdir /output
创建两个文本文件,word1.txt和word2.txt 将其放到容器中
内容分别为:
I love java
I love python
和
I really like java
将其上传到input
hadoop dfs -put ../../myapp/hadoop_jar/word2.txt /input
hadoop dfs -put ../../myapp/hadoop_jar/word1.txt /input
然后执行程序:
hadoop jar ../myapp/hadoop_jar/hadoop.jar /input /output
然后
hadoop dfs -cat output/*
就可以得到结果

浙公网安备 33010602011771号