上一页 1 2 3 4 5 6 7 8 9 10 ··· 34 下一页
摘要: 本文以两篇官方文档为基础来学习TensorFlow如何进行分布式训练,借此进入Strategy世界。 阅读全文
posted @ 2022-04-10 09:50 罗西的思考 阅读(1516) 评论(1) 推荐(1)
摘要: 当计算图在设备之间划分之后,跨设备的 PartitionGraph 之间可能存在着数据依赖关系,因此 TF 在它们之间插入 Send/Recv 节点,这样就完成数据交互。而在分布式模式之中,Send/Recv 通过 RpcRemoteRendezvous 完成数据交换,所以我们需要先看看 TF 之中的数据交换机制 Rendezvous。 阅读全文
posted @ 2022-04-06 15:52 罗西的思考 阅读(1228) 评论(1) 推荐(0)
摘要: 前文中,Master 在流程之中先后调用了 gRPC 给远端 worker 发送命令,即,GrpcRemoteWorker 一共发了两个请求:RegisterGraphAsync,RunGraphAsync,本文我们就来看看 GrpcWorkerService 如何处理。 阅读全文
posted @ 2022-04-01 16:47 罗西的思考 阅读(728) 评论(0) 推荐(0)
摘要: 在具体介绍 TensorFlow 分布式的各种 Strategy 之前,我们首先需要看看分布式的基础:分布式环境。只有把基础打扎实了,才能在以后的分析工作之中最大程度的扫清障碍,事半功倍。本文会从 Client 开始,看看 Master 如何对计算图进行处理。 阅读全文
posted @ 2022-03-29 16:34 罗西的思考 阅读(690) 评论(1) 推荐(2)
摘要: 在具体介绍 TensorFlow 分布式的各种 Strategy 之前,我们首先需要看看分布式的基础:分布式环境。只有把基础打扎实了,才能在以后的分析工作之中最大程度的扫清障碍,事半功倍。会话机制是TensorFlow 分布式运行时的核心,我们接下来按照从 Client 到 worker 的流程,把 Session 机制从前到后走一遍。 阅读全文
posted @ 2022-03-28 19:49 罗西的思考 阅读(943) 评论(1) 推荐(0)
摘要: 在具体介绍 TensorFlow 分布式的各种 Strategy 之前,我们首先需要看看分布式的基础:分布式环境。只有把基础打扎实了,才能在以后的分析工作之中最大程度的扫清障碍,事半功倍。我们接下来介绍缓存机制。 阅读全文
posted @ 2022-03-23 19:40 罗西的思考 阅读(605) 评论(0) 推荐(0)
摘要: 在具体介绍 TensorFlow 分布式的各种 Strategy 之前,我们首先需要看看分布式的基础:分布式环境。只有把基础打扎实了,才能在以后的分析工作之中最大程度的扫清障碍,事半功倍。本篇介绍 Worker(一系列相关概念) 的静态架构。 阅读全文
posted @ 2022-03-21 19:29 罗西的思考 阅读(894) 评论(0) 推荐(0)
摘要: 在具体介绍 TensorFlow 分布式的各种 Strategy 之前,我们首先需要看看分布式的基础:分布式环境。只有把基础打扎实了,才能在以后的分析工作之中最大程度的扫清障碍,事半功倍。本文梳理下 Master 的静态逻辑。 阅读全文
posted @ 2022-03-19 14:56 罗西的思考 阅读(1103) 评论(0) 推荐(1)
摘要: 在具体介绍 TensorFlow 分布式的各种 Strategy 之前,我们首先需要看看分布式的基础:分布式环境。只有把基础打扎实了,才能在以后的分析工作之中最大程度的扫清障碍,事半功倍。 阅读全文
posted @ 2022-03-16 19:33 罗西的思考 阅读(2464) 评论(0) 推荐(0)
摘要: 读论文有一种原则是:本领域最经典的论文,近5年最热的论文,近1年最新的论文。按照这个原则,本文主要介绍一篇Tensorflow 经典论文 [Implementation of Control Flow in TensorFlow]。 阅读全文
posted @ 2022-03-15 17:27 罗西的思考 阅读(995) 评论(0) 推荐(0)
上一页 1 2 3 4 5 6 7 8 9 10 ··· 34 下一页