gpio子系统和pinctrl子系统(下)

情景分析

打算从两个角度来情景分析,先从bsp驱动工程师的角度,然后是驱动工程师的角度,下面以三星s3c6410 Pinctrl-samsung.c为例看看pinctrl输入参数的初始化过程(最开始的zynq平台的pin配置貌似是通过bitstreams来的,内核层没看到有关配置pin的代码,不过最新的zynq代码里加入了pinctrl,但我手上的恰好的较早其的zynq代码,所以这里以三星的代码为例子),不过这里贴的代码有点多(尽量将无关的代码删掉),耐心的看吧_

bsp驱动工程师的角度

static int samsung_pinctrl_probe(struct platform_device *pdev)
{
	...
    ...
    ...
    //解析pinctrl信息,后面分析
    ctrl = samsung_pinctrl_get_soc_data(drvdata, pdev);
	drvdata->ctrl = ctrl;
	drvdata->dev = dev;
	
    ...
	...
    ...
    //向gpio子系统注册(三星有用gpio子系统)
	ret = samsung_gpiolib_register(pdev, drvdata);
	if (ret)
		return ret;

	//向pinctrl子系统注册
	ret = samsung_pinctrl_register(pdev, drvdata);
	if (ret) {
		samsung_gpiolib_unregister(pdev, drvdata);
		return ret;
	}

	...
    ...
    ...
    
	return 0;
}

先贴下6410 pinctrl设备树信息(arch/arm/boot/dts/s3c64xx.dtsi):

aliases {                                                                   
    i2c0 = &i2c0;                                                           
    pinctrl0 = &pinctrl0;                                                   
}; 

pinctrl0: pinctrl@7f008000 {                                            
    compatible = "samsung,s3c64xx-pinctrl";                             
    reg = <0x7f008000 0x1000>;                                          
    interrupt-parent = <&vic1>;                                         
    interrupts = <21>;                                                  

    pctrl_int_map: pinctrl-interrupt-map {                              
        interrupt-map = <0 &vic0 0>,                                    
                <1 &vic0 1>,                                            
                <2 &vic1 0>,                                            
                <3 &vic1 1>;                                            
        #address-cells = <0>;                                           
        #size-cells = <0>;                                              
        #interrupt-cells = <1>;                                         
    };                                                                  

    wakeup-interrupt-controller {                                       
        compatible = "samsung,s3c64xx-wakeup-eint";                     
        interrupts = <0>, <1>, <2>, <3>;                                
        interrupt-parent = <&pctrl_int_map>;                            
    };                                                                  
};  

下面边看代码边对照上面的设备树描述,看看解析过程:

static struct samsung_pin_ctrl *samsung_pinctrl_get_soc_data(
				struct samsung_pinctrl_drv_data *d,
				struct platform_device *pdev)
{
	int id;
	const struct of_device_id *match;
	struct device_node *node = pdev->dev.of_node;
	struct device_node *np;
	struct samsung_pin_ctrl *ctrl;
	struct samsung_pin_bank *bank;
	int i;

	//获取pinctrl的alias id,其实就是上面的pinctrl0了
	id = of_alias_get_id(node, "pinctrl");
	if (id < 0) {
		dev_err(&pdev->dev, "failed to get alias id\n");
		return NULL;
	}
    //获取该节点对应的match
	match = of_match_node(samsung_pinctrl_dt_match, node);
    //通过id找到对应的pinctrl,因为三星的有些soc是存在多个pinctrl的,
    //也就是说pinctrl0,pinctrl1等等同时存在,这里就是获取第id个,对于6410,就一个
    //struct samsung_pin_ctrl s3c64xx_pin_ctrl[] = {
    //    {
    //        /* pin-controller instance 1 data */
    //        .pin_banks	= s3c64xx_pin_banks0,
    //        .nr_banks	= ARRAY_SIZE(s3c64xx_pin_banks0),
    //        .eint_gpio_init = s3c64xx_eint_gpio_init,
    //        .eint_wkup_init = s3c64xx_eint_eint0_init,
    //        .label		= "S3C64xx-GPIO",
    //    },
    //};
	对于exynos5420,就存在多个啦:
    //struct samsung_pin_ctrl exynos5420_pin_ctrl[] = {
    //    {
    //        /* pin-controller instance 0 data */
    //        .pin_banks	= exynos5420_pin_banks0,
    //        .nr_banks	= ARRAY_SIZE(exynos5420_pin_banks0),
    //        .geint_con	= EXYNOS_GPIO_ECON_OFFSET,
    //        .geint_mask	= EXYNOS_GPIO_EMASK_OFFSET,
    //        .geint_pend	= EXYNOS_GPIO_EPEND_OFFSET,
    //        .weint_con	= EXYNOS_WKUP_ECON_OFFSET,
    //        .weint_mask	= EXYNOS_WKUP_EMASK_OFFSET,
    //        .weint_pend	= EXYNOS_WKUP_EPEND_OFFSET,
    //        .svc		= EXYNOS_SVC_OFFSET,
    //        .eint_gpio_init = exynos_eint_gpio_init,
    //        .eint_wkup_init = exynos_eint_wkup_init,
    //        .label		= "exynos5420-gpio-ctrl0",
    //    }, {
    //        /* pin-controller instance 1 data */
    //        .pin_banks	= exynos5420_pin_banks1,
    //        .nr_banks	= ARRAY_SIZE(exynos5420_pin_banks1),
    //        .geint_con	= EXYNOS_GPIO_ECON_OFFSET,
    //       .geint_mask	= EXYNOS_GPIO_EMASK_OFFSET,
    //        .geint_pend	= EXYNOS_GPIO_EPEND_OFFSET,
    //        .svc		= EXYNOS_SVC_OFFSET,
    //        .eint_gpio_init = exynos_eint_gpio_init,
    //        .label		= "exynos5420-gpio-ctrl1",
    //    },
    //    ...
    //    ...
    //    ...
    //};
	ctrl = (struct samsung_pin_ctrl *)match->data + id;
	//提取pin ctrl里的banks信息,这里就是ARRAY_SIZE(s3c64xx_pin_banks0)
	bank = ctrl->pin_banks;
    //遍历每一个bank,填充相应的信息
	for (i = 0; i < ctrl->nr_banks; ++i, ++bank) {
		spin_lock_init(&bank->slock);
		bank->drvdata = d;
        //设置bank的pin base
		bank->pin_base = ctrl->nr_pins;
        //更新ctrl->nr_pins,即该pin ctrl的pin数量,在后面的注册时会用到该成员
		ctrl->nr_pins += bank->nr_pins;
	}

	//遍历该节点的每一个子节点,上面的s3c64xx.dtsi文件末尾有一个
    //#include "s3c64xx-pinctrl.dtsi" 语句,s3c64xx-pinctrl.dtsi里
    //的信息是对当前节点pinctrl0的补充,内容如下:
    //&pinctrl0 {                                                                     
    ///*                                                                          
    // * Pin banks                                                                
    // */                                                                         
	//
    //gpa: gpa {                                                                  
    //    gpio-controller;                                                        
    //    #gpio-cells = <2>;                                                      
    //    interrupt-controller;                                                   
    //    #interrupt-cells = <2>;                                                 
    //};                                                                          
	//
    //gpb: gpb {                                                                  
    //    gpio-controller;                                                        
    //    #gpio-cells = <2>;                                                      
    //    interrupt-controller;                                                   
    //    #interrupt-cells = <2>;                                                 
    //};                                                                          

    //gpc: gpc {                                                                  
    //    gpio-controller;                                                        
    //    #gpio-cells = <2>;                                                      
    //    interrupt-controller;                                                   
    //    #interrupt-cells = <2>;                                                 
    //};          
    //...
    //...
    //...
    //hsi_bus: hsi-bus {                                                          
    //    samsung,pins = "gpk-0", "gpk-1", "gpk-2", "gpk-3",                      
    //            "gpk-4", "gpk-5", "gpk-6", "gpk-7";                             
    //    samsung,pin-function = <3>;                                             
    //    samsung,pin-pud = <PIN_PULL_NONE>;                                      
    //};     
    //}
    //这里就是处理这些子节点
	for_each_child_of_node(node, np) {
    	//如果该子节点没有gpio-controller属性,跳过处理,这里处理的是bank
        //只和gpio有关,所以跳过不关心的
		if (!of_find_property(np, "gpio-controller", NULL))
			continue;
		bank = ctrl->pin_banks;
		for (i = 0; i < ctrl->nr_banks; ++i, ++bank) {
			if (!strcmp(bank->name, np->name)) {
            	//将bank对应到它自己的设备节点
				bank->of_node = np;
				break;
			}
		}
	}

	ctrl->base = pin_base;
	pin_base += ctrl->nr_pins;

	return ctrl;
}

填充完必要的信息,就开始注册了,先看pinctrl的注册吧!注意,传入的参数drvdata是已经经过前面的解析填入了很多信息的

static int samsung_pinctrl_register(struct platform_device *pdev,
				    struct samsung_pinctrl_drv_data *drvdata)
{
	struct pinctrl_desc *ctrldesc = &drvdata->pctl;
	struct pinctrl_pin_desc *pindesc, *pdesc;
	struct samsung_pin_bank *pin_bank;
	char *pin_names;
	int pin, bank, ret;

	//初始化pinctrl_desc,register的时候要用
	ctrldesc->name = "samsung-pinctrl";
	ctrldesc->owner = THIS_MODULE;
    //这个ops是必须要的,里面的几个函数前面也都用到了,主要有
    //get_groups_count、dt_node_to_map、get_group_pins
	ctrldesc->pctlops = &samsung_pctrl_ops;
    //这个是pinctrl chip driver根据自己平台的特性,可选的支持的
    //主要有request、get_functions_count、get_function_groups、
    //enable,和gpio相关的还有额外几个gpio_request_enable、gpio_disable_free、gpio_set_direction
	ctrldesc->pmxops = &samsung_pinmux_ops;
    //这个是pinctrl chip driver根据自己平台的特性,可选的支持的
    //主要有pin_config_get、pin_config_set、pin_config_group_get、pin_config_group_set
	ctrldesc->confops = &samsung_pinconf_ops;

	//下面这部分也是pinctrl chip driver根据自己平台的特性必须填充的,用于表示该pinctrl chip
    //所有的pin信息
	pindesc = devm_kzalloc(&pdev->dev, sizeof(*pindesc) *
			drvdata->ctrl->nr_pins, GFP_KERNEL);
	if (!pindesc) {
		dev_err(&pdev->dev, "mem alloc for pin descriptors failed\n");
		return -ENOMEM;
	}
	ctrldesc->pins = pindesc;
	ctrldesc->npins = drvdata->ctrl->nr_pins;//该成员就是samsung_pin_ctrl填充的

	//填充pin号
	/* dynamically populate the pin number and pin name for pindesc */
	for (pin = 0, pdesc = pindesc; pin < ctrldesc->npins; pin++, pdesc++)
		pdesc->number = pin + drvdata->ctrl->base;//该成员也是由samsung_pin_ctrl填充的

	//分配空间,用于填充pin名字
	/*
	 * allocate space for storing the dynamically generated names for all
	 * the pins which belong to this pin-controller.
	 */
	pin_names = devm_kzalloc(&pdev->dev, sizeof(char) * PIN_NAME_LENGTH *
					drvdata->ctrl->nr_pins, GFP_KERNEL);
	if (!pin_names) {
		dev_err(&pdev->dev, "mem alloc for pin names failed\n");
		return -ENOMEM;
	}

	/* for each pin, the name of the pin is pin-bank name + pin number */
	for (bank = 0; bank < drvdata->ctrl->nr_banks; bank++) {
		pin_bank = &drvdata->ctrl->pin_banks[bank];
		for (pin = 0; pin < pin_bank->nr_pins; pin++) {
        	//填充pin的名字,注意这里的格式,设备树里的命名就得按照该格式,即bank名字+pin号
			sprintf(pin_names, "%s-%d", pin_bank->name, pin);
			pdesc = pindesc + pin_bank->pin_base + pin;
			pdesc->name = pin_names;
			pin_names += PIN_NAME_LENGTH;
		}
	}
	
    //到现在,离注册需要的条件就剩function和group的填充了,其实它们不是pinctrl子系统要求的,
    //但是回调函数的实现依赖这些,因此需要解析设备树信息来填充它们,后面会详细分析该函数
	ret = samsung_pinctrl_parse_dt(pdev, drvdata);
	if (ret)
		return ret;
	
    //一切准备好后,就注册了
	drvdata->pctl_dev = pinctrl_register(ctrldesc, &pdev->dev, drvdata);
	if (!drvdata->pctl_dev) {
		dev_err(&pdev->dev, "could not register pinctrl driver\n");
		return -EINVAL;
	}

	//
	for (bank = 0; bank < drvdata->ctrl->nr_banks; ++bank) {
		pin_bank = &drvdata->ctrl->pin_banks[bank];
		pin_bank->grange.name = pin_bank->name;
		pin_bank->grange.id = bank;
		pin_bank->grange.pin_base = pin_bank->pin_base;
		pin_bank->grange.base = pin_bank->gpio_chip.base;
		pin_bank->grange.npins = pin_bank->gpio_chip.ngpio;
		pin_bank->grange.gc = &pin_bank->gpio_chip;
		pinctrl_add_gpio_range(drvdata->pctl_dev, &pin_bank->grange);
	}

	return 0;
}

samsung_pinctrl_parse_dt分析:

static int samsung_pinctrl_parse_dt(struct platform_device *pdev,
				    struct samsung_pinctrl_drv_data *drvdata)
{
	...
    //获取pinctrl设备的子节点数量,前面已经讲过有哪些子节点了,不再重复
	grp_cnt = of_get_child_count(dev_np);
	if (!grp_cnt)
		return -EINVAL;
	
    //根据获取的数量,分配空间,每个配置节点对应于一个group(pin的集合)
	groups = devm_kzalloc(dev, grp_cnt * sizeof(*groups), GFP_KERNEL);
	if (!groups) {
		dev_err(dev, "failed allocate memory for ping group list\n");
		return -EINVAL;
	}
	grp = groups;

	//根据获取的数量,分配空间,每个配置节点对应的功能
	functions = devm_kzalloc(dev, grp_cnt * sizeof(*functions), GFP_KERNEL);
	if (!functions) {
		dev_err(dev, "failed to allocate memory for function list\n");
		return -EINVAL;
	}
	func = functions;

	//遍历每一个子节点,一个个处理
	/*
	 * Iterate over all the child nodes of the pin controller node
	 * and create pin groups and pin function lists.
	 */
	for_each_child_of_node(dev_np, cfg_np) {
		u32 function;
        //检查samsung,pins属性
		if (!of_find_property(cfg_np, "samsung,pins", NULL))
			continue;

		//将samsung,pins属性里面指定的名字列表转换为pin号列表
        //,这里面会用到前面samsung_pinctrl_get_soc_data填充的信息来匹配
		ret = samsung_pinctrl_parse_dt_pins(pdev, cfg_np,
					&drvdata->pctl,	&pin_list, &npins);
		if (ret)
			return ret;

		//下面就是构成一个pin group了,注意pin组的名字
        //,是配置节点名+GROUP_SUFFIX,GROUP_SUFFIX为-grp
		/* derive pin group name from the node name */
		gname = devm_kzalloc(dev, strlen(cfg_np->name) + GSUFFIX_LEN,
					GFP_KERNEL);
		if (!gname) {
			dev_err(dev, "failed to alloc memory for group name\n");
			return -ENOMEM;
		}
		sprintf(gname, "%s%s", cfg_np->name, GROUP_SUFFIX);

		grp->name = gname;
		grp->pins = pin_list;
		grp->num_pins = npins;
		of_property_read_u32(cfg_np, "samsung,pin-function", &function);
		grp->func = function;
		grp++;

		if (!of_find_property(cfg_np, "samsung,pin-function", NULL))
			continue;

		//如果存在samsung,pin-function属性,那么构建一个功能名
        //,功能名组合方式是配置节点名+FUNCTION_SUFFIX,FUNCTION_SUFFIX为-mux
		/* derive function name from the node name */
		fname = devm_kzalloc(dev, strlen(cfg_np->name) + FSUFFIX_LEN,
					GFP_KERNEL);
		if (!fname) {
			dev_err(dev, "failed to alloc memory for func name\n");
			return -ENOMEM;
		}
		sprintf(fname, "%s%s", cfg_np->name, FUNCTION_SUFFIX);

		func->name = fname;
		func->groups = devm_kzalloc(dev, sizeof(char *), GFP_KERNEL);
		if (!func->groups) {
			dev_err(dev, "failed to alloc memory for group list "
					"in pin function");
			return -ENOMEM;
		}
		func->groups[0] = gname;
		func->num_groups = 1;
		func++;
		func_idx++;
	}
	
    //存储下解析的数据信息
	drvdata->pin_groups = groups;
	drvdata->nr_groups = grp_cnt;
	drvdata->pmx_functions = functions;
	drvdata->nr_functions = func_idx;

	return 0;
}

下面通过分析各个ops,来进一步理解下上面几个函数所起的作用:

static const struct pinctrl_ops samsung_pctrl_ops = {
	.get_groups_count	= samsung_get_group_count,
	.get_group_name		= samsung_get_group_name,
	.get_group_pins		= samsung_get_group_pins,
	.dt_node_to_map		= samsung_dt_node_to_map,
	.dt_free_map		= samsung_dt_free_map,
};
static const struct pinmux_ops samsung_pinmux_ops = {
	.get_functions_count	= samsung_get_functions_count,
	.get_function_name	= samsung_pinmux_get_fname,
	.get_function_groups	= samsung_pinmux_get_groups,
	.enable			= samsung_pinmux_enable,
	.disable		= samsung_pinmux_disable,
    //由pinmux_gpio_direction间接调用,最开始应该是gpio子系统
    //的gpio_pin_direction_input、gpio_pin_direction_output触发
	.gpio_set_direction	= samsung_pinmux_gpio_set_direction,
};
static const struct pinconf_ops samsung_pinconf_ops = {
	.pin_config_get		= samsung_pinconf_get,
	.pin_config_set		= samsung_pinconf_set,
	.pin_config_group_get	= samsung_pinconf_group_get,
	.pin_config_group_set	= samsung_pinconf_group_set,
};

从上面一路分析下路来,我们应该知道dt_node_to_map是最先调用的,其次是get_functions_countget_function_nameget_function_groupsget_groups_countget_group_nameget_group_pinsrequest(三星pinmux_ops没有实现它)、enablepin_config_setpin_config_group_set所以我打算就按这个顺序进行分析。

调用dt_node_to_map的时候,从前文应该很清楚了吧,就是在某一个设备(pinctrl本身也算是一个设备,不过从前文贴出来的pinctrl0里,我没发现有pinctrl-xxx的属性,也就是说不需要对它做任何pin ctrl)用pinctrl_get请求解析自己设备树信息的时候,说的更准确点的话,就是解析该设备里某一个状态的某一个配置(一个状态可能需要多个配置来完成)的时候。下面用某一个子设备的设备树信息为例子,对应文件s3c6410-smdk6410.dts

#define PIN_PULL_NONE   0  

&uart0 {                                                                        
    pinctrl-names = "default";                                                  
    pinctrl-0 = <&uart0_data>, <&uart0_fctl>;                                   
    status = "okay";                                                            
};
uart0_data: uart0-data {                                                    
    samsung,pins = "gpa-0", "gpa-1";                                        
    samsung,pin-function = <2>;                                             
    samsung,pin-pud = <PIN_PULL_NONE>;                                      
};       
uart0_fctl: uart0-fctl {                                                    
    samsung,pins = "gpa-2", "gpa-3";                                        
    samsung,pin-function = <2>;                                             
    samsung,pin-pud = <PIN_PULL_NONE>;                                      
};

//下面部分是uart0的其他信息,和本文关心的pinctrl无关,之所以也列出来,只是不想让读者对这部分有误解
uart0: serial@7f005000 {                                                
    compatible = "samsung,s3c6400-uart";                                
    reg = <0x7f005000 0x100>;                                           
    interrupt-parent = <&vic1>;                                         
    interrupts = <5>;                                                   
    clock-names = "uart", "clk_uart_baud2",                             
            "clk_uart_baud3";                                           
    clocks = <&clocks PCLK_UART0>, <&clocks PCLK_UART0>,                
            <&clocks SCLK_UART>;                                        
    status = "disabled";                                                
};  

对应的解析代码如下,从前文描述应该清楚,期望回调函数返回该设备该状态该配置下的所有设置信息(可能只存在mux设置,也可能同时存在mux和conf设置),而上面的设备树里的uart0只有一个状态,default,对应的配置有两个,一个是uart0_data,一个是uart0_fctl,它们都是对配置节点的引用,配置节点都是pinctrl节点下的子节点,下面看代码吧:

static int samsung_dt_node_to_map(struct pinctrl_dev *pctldev,
			struct device_node *np, struct pinctrl_map **maps,
			unsigned *nmaps)
{
...
	//检查该节点(第一次调用应该是uart0_data节点,第二次调用应该是uart0_fctl节点啦)
    //含有多少个自己定义的属性,包括:
	//{ "samsung,pin-pud", PINCFG_TYPE_PUD },
	//{ "samsung,pin-drv", PINCFG_TYPE_DRV },
	//{ "samsung,pin-con-pdn", PINCFG_TYPE_CON_PDN },
	//{ "samsung,pin-pud-pdn", PINCFG_TYPE_PUD_PDN },    
	/* count the number of config options specfied in the node */
	for (idx = 0; idx < ARRAY_SIZE(pcfgs); idx++) {
		if (of_find_property(np, pcfgs[idx].prop_cfg, NULL))
			cfg_cnt++;
	}

	/*
	 * Find out the number of map entries to create. All the config options
	 * can be accomadated into a single config map entry.
	 */
    //如果有,那么说明需要继续后面的conf操作
	if (cfg_cnt)
		map_cnt = 1;
    //如果存在samsung,pin-function属性,那么不仅要做后面的操作,还需要额外做一些mux操作
	if (of_find_property(np, "samsung,pin-function", NULL))
		map_cnt++;
	if (!map_cnt) {
		dev_err(dev, "node %s does not have either config or function "
				"configurations\n", np->name);
		return -EINVAL;
	}

	//分配空间
	/* Allocate memory for pin-map entries */
	map = kzalloc(sizeof(*map) * map_cnt, GFP_KERNEL);
	if (!map) {
		dev_err(dev, "could not alloc memory for pin-maps\n");
		return -ENOMEM;
	}
	*nmaps = 0;

	//从前面的分析应该清楚了组名的格式,下面就是根据配置节点名构建一个格式,然后到系统
    //里找对应的信息
	/*
	 * Allocate memory for pin group name. The pin group name is derived
	 * from the node name from which these map entries are be created.
	 */
	gname = kzalloc(strlen(np->name) + GSUFFIX_LEN, GFP_KERNEL);
	if (!gname) {
		dev_err(dev, "failed to alloc memory for group name\n");
		goto free_map;
	}
	sprintf(gname, "%s%s", np->name, GROUP_SUFFIX);

	/*
	 * don't have config options? then skip over to creating function
	 * map entries.
	 */
	if (!cfg_cnt)
		goto skip_cfgs;

	//根据前面获取的数量来分配配置节点空间
	/* Allocate memory for config entries */
	cfg = kzalloc(sizeof(*cfg) * cfg_cnt, GFP_KERNEL);
	if (!cfg) {
		dev_err(dev, "failed to alloc memory for configs\n");
		goto free_gname;
	}

	//将已经定义的,属于自己定义列表里面的属性值提取出来,对应于我们这里,都是PIN_PULL_NONE
	/* Prepare a list of config settings */
	for (idx = 0, cfg_cnt = 0; idx < ARRAY_SIZE(pcfgs); idx++) {
		u32 value;
		if (!of_property_read_u32(np, pcfgs[idx].prop_cfg, &value))
			cfg[cfg_cnt++] =
				PINCFG_PACK(pcfgs[idx].cfg_type, value);
	}

	//创建设置信息,如设置名字,类型,以及多少个conf操作,每一个conf值
	/* create the config map entry */
	map[*nmaps].data.configs.group_or_pin = gname;
	map[*nmaps].data.configs.configs = cfg;
	map[*nmaps].data.configs.num_configs = cfg_cnt;
	map[*nmaps].type = PIN_MAP_TYPE_CONFIGS_GROUP;
	*nmaps += 1;

skip_cfgs:
	/* create the function map entry */
	if (of_find_property(np, "samsung,pin-function", NULL)) {
    	//如果存在samsung,pin-function属性,说明有mux的需求,处理它
        //这里是构建功能名,和前面初始化的时候一致
		fname = kzalloc(strlen(np->name) + FSUFFIX_LEN,	GFP_KERNEL);
		if (!fname) {
			dev_err(dev, "failed to alloc memory for func name\n");
			goto free_cfg;
		}
		sprintf(fname, "%s%s", np->name, FUNCTION_SUFFIX);

		//填充mux操作需要的信息,如哪一个设备,哪一个功能
		map[*nmaps].data.mux.group = gname;
		map[*nmaps].data.mux.function = fname;
		map[*nmaps].type = PIN_MAP_TYPE_MUX_GROUP;
		*nmaps += 1;
	}

	*maps = map;
	return 0;
...
}

samsung_get_functions_count,它用于获取功能的总数量drvdata->nr_functions,前面已经分析过初始化这个的过程,所以这里就不再分析。samsung_pinmux_get_fname从已经初始化的数据结构里拿出对应索引上的name,name就是由配置节点名+-mux后缀构成。pinctrl_get的过程(pinmux_map_to_setting),会以map->data.mux.function为参数调用samsung_pinmux_get_fname获取该功能对应的索引来初始化setting->data.mux.func,然后在用samsung_pinmux_get_groups获取的组信息里,用前面解析出来的map[*nmaps].data.mux.group作为输入参数,获取该组的索引来初始化setting->data.mux.group。最后在pinctrl_select_state的时候,会通过上面的信息并结合最开始初始化的一些数据结构进行mux和conf操作。pinconf_map_to_setting的操作类似,不再重复。在pinctrl_select_state的时候samsung_pinmux_enablesamsung_pinconf_set有可能会触发,这里就不再继续分析了,但还是贴出代码吧!

/* enable a specified pinmux by writing to registers */
static int samsung_pinmux_enable(struct pinctrl_dev *pctldev, unsigned selector,
					unsigned group)
{
	samsung_pinmux_setup(pctldev, selector, group, true);
	return 0;
}

static void samsung_pinmux_setup(struct pinctrl_dev *pctldev, unsigned selector,
					unsigned group, bool enable)
{
	struct samsung_pinctrl_drv_data *drvdata;
	const unsigned int *pins;
	struct samsung_pin_bank *bank;
	void __iomem *reg;
	u32 mask, shift, data, pin_offset, cnt;
	unsigned long flags;

	drvdata = pinctrl_dev_get_drvdata(pctldev);
	pins = drvdata->pin_groups[group].pins;

	/*
	 * for each pin in the pin group selected, program the correspoding pin
	 * pin function number in the config register.
	 */
	for (cnt = 0; cnt < drvdata->pin_groups[group].num_pins; cnt++) {
		struct samsung_pin_bank_type *type;

		pin_to_reg_bank(drvdata, pins[cnt] - drvdata->ctrl->base,
				&reg, &pin_offset, &bank);
		type = bank->type;
		mask = (1 << type->fld_width[PINCFG_TYPE_FUNC]) - 1;
		shift = pin_offset * type->fld_width[PINCFG_TYPE_FUNC];
		if (shift >= 32) {
			/* Some banks have two config registers */
			shift -= 32;
			reg += 4;
		}

		spin_lock_irqsave(&bank->slock, flags);

		data = readl(reg + type->reg_offset[PINCFG_TYPE_FUNC]);
		data &= ~(mask << shift);
		if (enable)
			data |= drvdata->pin_groups[group].func << shift;
		writel(data, reg + type->reg_offset[PINCFG_TYPE_FUNC]);

		spin_unlock_irqrestore(&bank->slock, flags);
	}
}
/* set the pin config settings for a specified pin */
static int samsung_pinconf_set(struct pinctrl_dev *pctldev, unsigned int pin,
				unsigned long *configs, unsigned num_configs)
{
	int i, ret;

	for (i = 0; i < num_configs; i++) {
		ret = samsung_pinconf_rw(pctldev, pin, &configs[i], true);
		if (ret < 0)
			return ret;
	} /* for each config */

	return 0;
}

/* set or get the pin config settings for a specified pin */
static int samsung_pinconf_rw(struct pinctrl_dev *pctldev, unsigned int pin,
				unsigned long *config, bool set)
{
	struct samsung_pinctrl_drv_data *drvdata;
	struct samsung_pin_bank_type *type;
	struct samsung_pin_bank *bank;
	void __iomem *reg_base;
	enum pincfg_type cfg_type = PINCFG_UNPACK_TYPE(*config);
	u32 data, width, pin_offset, mask, shift;
	u32 cfg_value, cfg_reg;
	unsigned long flags;

	drvdata = pinctrl_dev_get_drvdata(pctldev);
	pin_to_reg_bank(drvdata, pin - drvdata->ctrl->base, &reg_base,
					&pin_offset, &bank);
	type = bank->type;

	if (cfg_type >= PINCFG_TYPE_NUM || !type->fld_width[cfg_type])
		return -EINVAL;

	width = type->fld_width[cfg_type];
	cfg_reg = type->reg_offset[cfg_type];

	spin_lock_irqsave(&bank->slock, flags);

	mask = (1 << width) - 1;
	shift = pin_offset * width;
	data = readl(reg_base + cfg_reg);

	if (set) {
		cfg_value = PINCFG_UNPACK_VALUE(*config);
		data &= ~(mask << shift);
		data |= (cfg_value << shift);
		writel(data, reg_base + cfg_reg);
	} else {
		data >>= shift;
		data &= mask;
		*config = PINCFG_PACK(cfg_type, data);
	}

	spin_unlock_irqrestore(&bank->slock, flags);

	return 0;
}
/* set the pin config settings for a specified pin group */
static int samsung_pinconf_group_set(struct pinctrl_dev *pctldev,
			unsigned group, unsigned long *configs,
			unsigned num_configs)
{
	struct samsung_pinctrl_drv_data *drvdata;
	const unsigned int *pins;
	unsigned int cnt;

	drvdata = pinctrl_dev_get_drvdata(pctldev);
	pins = drvdata->pin_groups[group].pins;

	for (cnt = 0; cnt < drvdata->pin_groups[group].num_pins; cnt++)
		samsung_pinconf_set(pctldev, pins[cnt], configs, num_configs);

	return 0;
}

驱动工程师的角度

一般会用到的接口:
devm_pinctrl_get
pinctrl_lookup_state
pinctrl_select_state

操作gpio时,会用到的接口:
pinctrl_request_gpio
pinctrl_gpio_direction_input
pinctrl_gpio_direction_output

还有一些额外变体,懒得贴了

下面以gpio方式的api为例子继续分析,这样也好与文章最开始的gpio子系统结合起来理解!pinctrl_request_gpio在驱动里,主要有两类会用到它,一类是gpio子系统的实现者,即gpio-xxx.c那些文件,另一类是pinctrl的实现者,即pinctrl-xxx.c那些文件。它们在注册gpio chip时,将pinctrl_request_gpio作为gpio chip里request,这样间接将pinctrl操作交给gpio子系统自动完成。从gpio子系统分析可知,request的调用是在gpio_request或者gpiod_get间接触发。看一下pinctrl_request_gpio做了些什么:

int pinctrl_request_gpio(unsigned gpio)
{
	struct pinctrl_dev *pctldev;
	struct pinctrl_gpio_range *range;
	int ret;
	int pin;
	//这里会通过gpio来取得该gpio对应的pctldev和range,还记得分析gpiochip_add时的
    //of_gpiochip_add_pin_range吧,这里就用到了它add的信息
	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
	if (ret) {
		if (pinctrl_ready_for_gpio_range(gpio))
			ret = 0;
		return ret;
	}

	mutex_lock(&pctldev->mutex);

	/* Convert to the pin controllers number space */
    //有了range就好办了啦,它里面有gpio与pin号的对应关系,当然这关系是最开始从设备树里解析过来的
	pin = gpio_to_pin(range, gpio);

	//有了所有信息调用pinmux_request_gpio进一步request吧
	ret = pinmux_request_gpio(pctldev, range, pin, gpio);

	mutex_unlock(&pctldev->mutex);

	return ret;
}

继续pinmux_request_gpio

int pinmux_request_gpio(struct pinctrl_dev *pctldev,
			struct pinctrl_gpio_range *range,
			unsigned pin, unsigned gpio)
{
	const char *owner;
	int ret;

	/* Conjure some name stating what chip and pin this is taken by */
	owner = kasprintf(GFP_KERNEL, "%s:%d", range->name, gpio);
	if (!owner)
		return -EINVAL;
	//pin_request之前分析的时候有看到调用过,不过这次gpio的时候会传入range,导致它的
    //调用流程会有所不同,里面会触发pinmux_ops的gpio_request_enable回调,而不是request回调
	ret = pin_request(pctldev, pin, owner, range);
	if (ret < 0)
		kfree(owner);

	return ret;
}

最后看看设备驱动模型中pinctrl的影子,在bus_probe_device的时候,会调用device_attach,而device_attach里会调用__device_attach去attach,在匹配成功后,会调用driver_probe_device,它会导致really_probe的调用来进行驱动的probe,最终会导致pinctrl_bind_pins调用,这个函数会pinctrl_get并设置设备的初始状态,这个过程不需要驱动额外做任何事情,多么巧妙啊 

int pinctrl_bind_pins(struct device *dev)
{
	int ret;

	dev->pins = devm_kzalloc(dev, sizeof(*(dev->pins)), GFP_KERNEL);
	if (!dev->pins)
		return -ENOMEM;

	dev->pins->p = devm_pinctrl_get(dev);
	if (IS_ERR(dev->pins->p)) {
		dev_dbg(dev, "no pinctrl handle\n");
		ret = PTR_ERR(dev->pins->p);
		goto cleanup_alloc;
	}

	dev->pins->default_state = pinctrl_lookup_state(dev->pins->p,
					PINCTRL_STATE_DEFAULT);
	if (IS_ERR(dev->pins->default_state)) {
		dev_dbg(dev, "no default pinctrl state\n");
		ret = 0;
		goto cleanup_get;
	}

	ret = pinctrl_select_state(dev->pins->p, dev->pins->default_state);
	if (ret) {
		dev_dbg(dev, "failed to activate default pinctrl state\n");
		goto cleanup_get;
	}
...
}

总结

通过对gpio子系统和pinctrl子系统的分析,应该对这两个系统有了大致的概念了吧_ gpio子系统让驱动工程师不用关心底层gpio chip的具体实现,让bsp工程师不用关心上层驱动工程师的使用方式。pinctrl子系统帮我们管理了pin信息,包括了pin的mux和conf,同时也透明的处理了与gpio子系统的关联以及设备模型的关联。

完!
2015年7月

posted @ 2017-10-14 10:18  rongpmcu  阅读(4545)  评论(2编辑  收藏  举报