摘要:
作者:July、yansha。出处:http://blog.csdn.net/v_JULY_v。引言 常关注本blog的读者朋友想必看过此篇文章:从B树、B+树、B*树谈到R 树,这次,咱们来讲另外两种树:Tire树与后缀树。不过,在此之前,先来看两个问题。 第一个问题: 一个文本文件,大约有一万行,每行一个词,要求统计出其中最频繁出现的前10个词,请给出思想,给出时间复杂度分析。 之前在此文:海量数据处理面试题集锦与Bit-map详解中给出的参考答案:用trie树统计每个词出现的次数,时间复杂度是O(n*le)(le表示单词的平均长度),然后是找出出现最频繁的前10个词。也可以用堆来实现(. 阅读全文
文章分类 - 海量数据处理
教你如何迅速秒杀掉:99%的海量数据处理面试题
2012-03-30 04:35 by Rollen Holt, 1063 阅读, 收藏,
摘要:
作者:July出处:结构之法算法之道blog前言 一般而言,标题含有“秒杀”,“99%”,“史上最全/最强”等词汇的往往都脱不了哗众取宠之嫌,但进一步来讲,如果读者读罢此文,却无任何收获,那么,我也甘愿背负这样的罪名,:-),同时,此文可以看做是对这篇文章:十道海量数据处理面试题与十个方法大总结的一般抽象性总结。 毕竟受文章和理论之限,本文将摒弃绝大部分的细节,只谈方法/模式论,且注重用最通俗最直白的语言阐述相关问题。最后,有一点必须强调的是,全文行文是基于面试题的分析基础之上的,具体实践过程中,还是得具体情况具体分析,且场景也远比本文所述的任何一种情况复杂得多。 OK,若有任何问题,欢迎.. 阅读全文
从头到尾彻底解析Hash表算法
2012-03-30 02:23 by Rollen Holt, 4217 阅读, 收藏,
摘要:
十一、从头到尾彻底解析Hash 表算法作者:July、wuliming、pkuoliver出处:http://blog.csdn.net/v_JULY_v。说明:本文分为三部分内容, 第一部分为一道百度面试题Top K算法的详解;第二部分为关于Hash表算法的详细阐述;第三部分为打造一个最快的Hash表算法。------------------------------------第一部分:Top K 算法详解问题描述百度面试题: 搜索引擎会通过日志文件把用户每次检索使用的所有检索串都记录下来,每个查询串的长度为1-255字节。 假设目前有一千万个记录(这些查询串的重复度比较高,虽然总数是1千. 阅读全文
十七道海量数据处理面试题与Bit-map详解
2012-03-30 02:03 by Rollen Holt, 913 阅读, 收藏,
摘要:
作者:小桥流水,redfox66,July。前言 本博客内曾经整理过有关海量数据处理的10道面试题(十道海量数据处理面试题与十个方法大总结),此次除了重复了之前的10道面试题之后,重新多整理了7道。仅作各位参考,不作它用。 同时,程序员编程艺术系列将重新开始创作,第十一章以后的部分题目来源将取自下文中的17道海量数据处理的面试题。因为,我们觉得,下文的每一道面试题都值得重新思考,重新深究与学习。再者,编程艺术系列的前十章也是这么来的。若您有任何问题或建议,欢迎不吝指正。谢谢。第一部分、十五道海量数据处理面试题1. 给定a、b两个文件,各存放50亿个url,每个url各占64字节,内存限制是4G 阅读全文