会员
众包
新闻
博问
闪存
赞助商
HarmonyOS
Chat2DB
所有博客
当前博客
我的博客
我的园子
账号设置
会员中心
简洁模式
...
退出登录
注册
登录
rockchen
博客园
首页
新随笔
联系
订阅
管理
2017年2月20日
K-近邻算法
摘要: 1. 概念 测量不同特征值之间的距离来进行分类 优点:精度高、对异常值不敏感、无数据输入假定 缺点:计算复杂度高、空间复杂度高。 适用范围:数值型和标称型 工作原理: 存在一个样本数据合计,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类的对应关系。输入没有标签
阅读全文
posted @ 2017-02-20 17:07 rockchen
阅读(2061)
评论(0)
推荐(0)
公告