二分查找

875. 爱吃香蕉的珂珂

珂珂喜欢吃香蕉。这里有 N 堆香蕉,第 i 堆中有 piles[i] 根香蕉。警卫已经离开了,将在 H 小时后回来。

珂珂可以决定她吃香蕉的速度 K (单位:根/小时)。每个小时,她将会选择一堆香蕉,从中吃掉 K 根。如果这堆香蕉少于 K 根,她将吃掉这堆的所有香蕉,然后这一小时内不会再吃更多的香蕉。  

珂珂喜欢慢慢吃,但仍然想在警卫回来前吃掉所有的香蕉。

返回她可以在 H 小时内吃掉所有香蕉的最小速度 K(K 为整数)。

 

示例 1:

输入: piles = [3,6,7,11], H = 8
输出: 4
示例 2:

输入: piles = [30,11,23,4,20], H = 5
输出: 30
示例 3:

输入: piles = [30,11,23,4,20], H = 6
输出: 23

我们想一下K的可能的取值范围,当H无穷大的时候,科科有充足的时间去吃,那么就可以每小时只吃一根,也可以吃完,所以K的最小取值是1。那么当H最小,等于N时,那么一个小时内必须吃完任意一堆,那么K值就应该是香蕉最多的那一堆的个数,题目中限定了不超过 1e9,这就是最大值。所以要求的K值的范围就是 [1, 1e9],固定的范围内查找数字,当然,最暴力的方法就是一个一个的试,凭博主多年与 OJ 抗衡的经验来说,基本可以不用考虑的。那么二分查找法就是不二之选了,我们知道经典的二分查找法,是要求数组有序的,而这里香蕉个数数组又不一定是有序的。这是一个很好的观察,但是要弄清楚到底是什么应该是有序的,要查找的K是吃速,跟香蕉堆的个数并没有直接的关系,而K所在的数组其实应该是 [1, 1e9] 这个数组,其本身就是有序的,所以二分查找没有问题。

当求出了 mid 之后,需要统计用该速度吃完所有的香蕉堆所需要的时间,统计的方法就是遍历每堆的香蕉个数,然后算吃完该堆要的时间。比如 K=4,那么假如有3个香蕉,需要1个小时,有4香蕉,还是1个小时,有5个香蕉,就需要两个小时,如果将三种情况融合为一个式子呢,就是用吃速加上香蕉个数减去1,再除以吃速即可,即 (pile+mid-1)/mid,大家可以自行带数字检验,是没有问题的。算出需要的总时间后去跟H比较,若小于H,说明吃的速度慢了,需要加快速度,所以 left 更新为 mid+1,否则 right 更新为 mid,最后返回 right 即可

class Solution {
public:
    int minEatingSpeed(vector<int>& piles, int H) {
        int right = 1e9;
        int left = 1;
        int mid = 0;
        while(left < right) {
            mid = (right + left) / 2;
            int cnt = 0;
            for (int pile : piles) {
                int cost = (pile % mid == 0) ? pile / mid : pile / mid + 1;
                cnt += cost; 
            }
            if (cnt <= H) { // 吃快了
                right = mid;
            } else { // 吃慢了
                left = mid + 1;
            }
        }
        return right;
    }
};

 

posted @ 2020-03-12 20:13  ren_zhg1992  阅读(166)  评论(0)    收藏  举报