莫比乌斯反演

前置知识

\(\varphi(n),\mu(n),I(n)=1,\varepsilon(n)=[n=1],id(n)=n\),数论分块。

狄利克雷卷积

数论函数 \(f,g\) 的狄利克雷卷积 \(f*g\) 定义如下:

\[(f*g)(n)=\sum_{d|n}f(d)g\left(\frac nd\right) \]

卷积有交换律,结合律,分配律。

三个重要恒等式:

  • \(\mu*I=\varepsilon\)
  • \(\varphi*I=id\)
  • \(\mu*id=\varphi\)

莫比乌斯反演

定理:若 \(g=f*I\),则 \(f=\mu*g\)。证明:

\[g=f*I\Rightarrow \mu*g=f*I*\mu=f*\varepsilon=f \]

求和变形

技巧:

  1. 增加枚举变量。
  2. 交换枚举变量。
  3. 删除无用变量。
  4. 换元。

例题

  1. \(\sum_{i=1}^n\sum_{j=1}^n\gcd(i,j)\)

\[\begin{aligned} &\sum_{i=1}^n\sum_{j=1}^n\gcd(i,j)\\ =&\sum_{i=1}^n\sum_{j=1}^n id(\gcd(i,j))\\ =&\sum_{i=1}^n\sum_{j=1}^n\sum_{d\mid\gcd(i,j)}\varphi(d)I\left(\frac{\gcd(i,j)}d\right)\\ =&\sum_{i=1}^n\sum_{j=1}^n\sum_{d\mid\gcd(i,j)}\varphi(d)\\ =&\sum_{d=1}^n\varphi(d)\sum_{i=1}^n\sum_{j=1}^n[d\mid\gcd(i,j)]\\ =&\sum_{d=1}^n\varphi(d)\sum_{i=1}^n\sum_{j=1}^n[i=k_1d][j=k_2d]\\ =&\sum_{d=1}^n\varphi(d)\left(\left\lfloor\frac nd\right\rfloor\right)^2 \end{aligned} \]

数论分块即可。

  1. \(\sum_{i=1}^n\sum_{j=1}^n\operatorname{lcm}(i,j)\)

\[\begin{aligned} &\sum_{i=1}^n\sum_{j=1}^n\operatorname{lcm}(i,j)\\ =&\sum_{i=1}^n\sum_{j=1}^n\frac{ij}{\gcd(i,j)}\\ =&\sum_{i=1}^n\sum_{j=1}^n\sum_{d=1}^n[\gcd(i,j)=d]\frac{ij}d\\ =&\sum_{d=1}^n\sum_{i=1}^n\sum_{j=1}^n[\gcd(i,j)=d]\frac{ij}d\\ =&\sum_{d=1}^n\sum_{i'=1}^{\left\lfloor \frac nd\right\rfloor}\sum_{j'=1}^{\left\lfloor \frac nd\right\rfloor}[\gcd(i'd,j'd)=d]\frac{i'd\cdot j'd}d\\ =&\sum_{d=1}^n d\sum_{i'=1}^{\left\lfloor \frac nd\right\rfloor}\sum_{j'=1}^{\left\lfloor \frac nd\right\rfloor}[\gcd(i',j')=1]i'j' \end{aligned} \]

把后边两个 \(\sum\) 单独拎出来:

\[\begin{aligned} f(n)=&\sum_{i=1}^n\sum_{j=1}^n[\gcd(i,j)=1]ij\\ =&\sum_{i=1}^n\sum_{j=1}^n\varepsilon(\gcd(i,j))ij\\ =&\sum_{i=1}^n\sum_{j=1}^n ij\sum_{d\mid\gcd(i,j)}\mu(d)I\left(\frac{\gcd(i,j)}d\right)\\ =&\sum_{i=1}^n\sum_{j=1}^n ij\sum_{d\mid\gcd(i,j)}\mu(d)\\ =&\sum_{d=1}^n\mu(d)\sum_{i'=1}^{\left\lfloor\frac nd\right\rfloor}\sum_{j'=1}^{\left\lfloor\frac nd\right\rfloor}i'd\cdot j'd\\ =&\sum_{d=1}^n\mu(d)\cdot d^2\sum_{i'=1}^{\left\lfloor\frac nd\right\rfloor}\sum_{j'=1}^{\left\lfloor\frac nd\right\rfloor}i'j'\\ =&\sum_{d=1}^n\mu(d)\cdot d^2\sum_{i'=1}^{\left\lfloor\frac nd\right\rfloor}i'\sum_{j'=1}^{\left\lfloor\frac nd\right\rfloor}j'\\ =&\sum_{d=1}^n\mu(d)\cdot d^2\cdot g\left(\left\lfloor\frac nd\right\rfloor\right)^2 \end{aligned} \]

其中:

\[g(n)=\frac{n(n+1)}2 \]

这个 \(f(n)\) 可以数论分块求解。

最后,我们有:

\[\begin{aligned} &\sum_{i=1}^n\sum_{j=1}^n\operatorname{lcm}(i,j)\\ =&\sum_{d=1}^n d\cdot f\left(\left\lfloor\frac nd\right\rfloor\right) \end{aligned} \]

数论分块即可。

  1. \(\sum_{i=1}^n\operatorname{lcm}(i,n)\)

其实推这个式子有比较简单的方法,不过我还是用了最暴力的方法(跳了一些步):

\[\begin{aligned} &\sum_{i=1}^n\operatorname{lcm}(i,n)\\ =&n\sum_{i=1}^n\frac{i}{\gcd(i,n)}\\ =&n\sum_{d\mid n}\sum_{i=1}^n[\gcd(i,n)=d]\frac id\\ =&n\sum_{d\mid n}\sum_{i=1}^{\frac nd}\left[\gcd\left(i,\frac nd\right)=1\right]i \end{aligned} \]

同样把后面那个 \(\sum\) 拿出来:

\[\begin{aligned} f(n)=&\sum_{i=1}^n[\gcd(i,n)=1]i\\ =&\sum_{i=1}^n\sum_{d\mid\gcd(i,n)}i\cdot\mu(d)\\ =&\sum_{d\mid n}\sum_{i=1}^{\frac nd}i\cdot d\cdot \mu(d)\\ =&\sum_{d\mid n}d\cdot \mu(d)\sum_{i=1}^{\frac nd}i\\ =&\sum_{d\mid n}d\cdot \mu(d)\cdot \frac{\frac nd\left(\frac nd+1\right)}2\\ =&\frac n2\sum_{d\mid n}\mu(d)\left(\frac nd+1\right)\\ =&\frac n2\sum_{d\mid n}\mu(d)id\left(\frac nd\right)+\sum_{d\mid n}\mu(d)I\left(\frac nd\right)\\ =&\frac n2(\varphi(n)+\varepsilon(n)) \end{aligned} \]

注意,最后几步是在逆用反演公式!

代回原式:

\[\begin{aligned} &\sum_{i=1}^n\operatorname{lcm}(i,n)\\ =&n\sum_{d\mid n}f\left(\frac nd\right)\\ =&n\sum_{d\mid n}f(d)\\ =&\frac n2\sum_{d\mid n}d(\varphi(d)+\varepsilon(d)) \end{aligned} \]

\(d=1\) 时,\(\varepsilon(d)=1\)\(\varphi(d)=1\),其他时候 \(\varepsilon(d)=0\),于是最终的答案是:

\[\frac n2\sum_{d\mid n,d\ne 1}d\varphi(d)+\frac n2 \]

posted @ 2021-07-13 22:36  registerGen  阅读(37)  评论(0)    收藏  举报