BZOJ4259:残缺的字符串(FFT)

Description

很久很久以前,在你刚刚学习字符串匹配的时候,有两个仅包含小写字母的字符串A和B,其中A串长度为m,B串长度为n。可当你现在再次碰到这两个串时,这两个串已经老化了,每个串都有不同程度的残缺。
你想对这两个串重新进行匹配,其中A为模板串,那么现在问题来了,请回答,对于B的每一个位置i,从这个位置开始连续m个字符形成的子串是否可能与A串完全匹配?

Input

第一行包含两个正整数m,n(1<=m<=n<=300000),分别表示A串和B串的长度。
第二行为一个长度为m的字符串A。
第三行为一个长度为n的字符串B。
两个串均仅由小写字母和*号组成,其中*号表示相应位置已经残缺。

Output

第一行包含一个整数k,表示B串中可以完全匹配A串的位置个数。
若k>0,则第二行输出k个正整数,从小到大依次输出每个可以匹配的开头位置(下标从1开始)。

Sample Input

3 7
a*b
aebr*ob

Sample Output

2
1 5

Solution

FFT好神啊还能做字符串的题(逃
 

Code

 1 #include<iostream>
 2 #include<cstring>
 3 #include<cstdio>
 4 #include<cmath>
 5 #define N (1200000+1000)
 6 using namespace std;
 7 
 8 double pi=acos(-1.0),F[N];
 9 int n,m,fn,l,r[N],A[N],B[N];
10 int ans_num,ans[N];
11 char stA[N],stB[N];
12 struct complex
13 {
14     double x,y;
15     complex (double xx=0,double yy=0)
16     {
17         x=xx; y=yy;
18     }
19 }a[N],b[N];
20 
21 complex operator + (complex a,complex b){return complex(a.x+b.x,a.y+b.y);}
22 complex operator - (complex a,complex b){return complex(a.x-b.x,a.y-b.y);}
23 complex operator * (complex a,complex b){return complex(a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x);}
24 complex operator / (complex a,double b){return complex(a.x/b,a.y/b);}
25 
26 void FFT(int n,complex *a,int opt)
27 {
28     for (int i=0; i<n; ++i)
29         if (i<r[i])
30             swap(a[i],a[r[i]]);
31     for (int k=1; k<n; k<<=1)
32     {
33         complex wn=complex(cos(pi/k),opt*sin(pi/k));
34         for (int i=0; i<n; i+=k<<1)
35         {
36             complex w=complex(1,0);
37             for (int j=0; j<k; ++j,w=w*wn)
38             {
39                 complex x=a[i+j], y=w*a[i+j+k];
40                 a[i+j]=x+y; a[i+j+k]=x-y;
41             }
42         }
43     }
44     if (opt==-1) for (int i=0; i<n; ++i) a[i]=a[i]/n;
45 }
46 
47 int main()
48 {
49     scanf("%d%d",&m,&n);
50     scanf("%s%s",stA+1,stB+1);
51     for (int i=1; i<=m; ++i) A[m-i+1]=(stA[i]=='*')?0:stA[i]-'a'+1;
52     for (int i=1; i<=n; ++i) B[i]=(stB[i]=='*')?0:stB[i]-'a'+1;
53     m++; n++;//因为我是字符串AB都向右移了一位,则计算出来的答案应该是向右移动两位的,故这里要+1 
54     
55     fn=1;
56     while (fn<=n+m) fn<<=1,l++;
57     for (int i=0; i<fn; ++i) 
58         r[i]=(r[i>>1]>>1) | ((i&1)<<(l-1));
59     
60     memset(a,0,sizeof(a)); memset(b,0,sizeof(b));     
61     for (int i=1; i<=n; ++i)
62         a[i].x=A[i]*A[i]*A[i],b[i].x=B[i];
63     FFT(fn,a,1); FFT(fn,b,1);
64     for (int i=0; i<=fn; ++i)
65         a[i]=a[i]*b[i];
66     FFT(fn,a,-1);
67     for (int i=1; i<=n; ++i)
68         F[i]+=a[i].x;
69     
70     memset(a,0,sizeof(a)); memset(b,0,sizeof(b));    
71     for (int i=1; i<=n; ++i)
72         a[i].x=A[i]*A[i],b[i].x=B[i]*B[i];
73     FFT(fn,a,1); FFT(fn,b,1);
74     for (int i=0; i<=fn; ++i)
75         a[i]=a[i]*b[i];
76     FFT(fn,a,-1);
77     for (int i=1; i<=n; ++i)
78         F[i]-=2*a[i].x;
79     
80     memset(a,0,sizeof(a)); memset(b,0,sizeof(b));
81     for (int i=1; i<=n; ++i)
82         a[i].x=A[i],b[i].x=B[i]*B[i]*B[i];
83     FFT(fn,a,1); FFT(fn,b,1);
84     for (int i=0; i<=fn; ++i)
85         a[i]=a[i]*b[i];
86     FFT(fn,a,-1);
87     for (int i=1; i<=n; ++i)
88         F[i]+=a[i].x;
89     
90     for (int i=m; i<=n; ++i) if ((int)(F[i]+0.5)==0) ans[++ans_num]=i-m+1;
91     printf("%d\n",ans_num);
92     for (int i=1; i<ans_num; ++i)  printf("%d ",ans[i]);
93     printf("%d",ans[ans_num]);    
94 }
posted @ 2018-04-17 16:01  Refun  阅读(185)  评论(0编辑  收藏  举报