深度学习在本质上属于可统计不可推理的统计机器学习范畴。
很多时候呈现出来的就是一个黑箱(Black Box)系统,其性能很好,却不知道为何而好,缺乏解释性。
深度学习中的“end-to-end(端到端):输入的是原始数据(始端),然后输出的直接就是最终目标(末端),中间过程不可知。
深度学习的学习对象同样是数据,但与传统机器学习所不同的是,它需要大量的数据,也就是“大数据(Big Data)”。
机器学习与深度学习的简明对比
"机器学习"的核心是 对数据的运用,依据统计或者推理的方法,让计算机系统的性能得到提升。
而深度学习,则是把由人工选取对象特征,变更为通过神经网络自己选取特征,为了提升学习的性能,神经网络的表示学习的层次较多(较深)。