随笔分类 - 机器学习 Machine learning
摘要:径向基函数 在说径向基网络之前,先聊下径向基函数(Radical Basis Function,RBF)。径向基函数(Radical Basis Function,RBF)方法是Powell在1985年提出的。所谓径向基函数,其实就是某种沿径向对称的标量函数。通常定义为空间中任一点x到某一中心c之间
阅读全文
摘要:学习过程 下面是一个典型的机器学习的过程,首先给出一个输入数据,我们的算法会通过一系列的过程得到一个估计的函数,这个函数有能力对没有见过的新数据给出一个新的估计,也被称为构建一个模型。就如同上面的线性回归函数。 线性回归 线性回归假设特征和结果满足线性关系。其实线性关系的表达能力非常强大,每个特征对
阅读全文
摘要:【特征工程】特征选择与特征学习 特征选择(Feature Selection,FS)和特征抽取(Feature Extraction, FE)是特征工程(Feature Engineering)的两个重要的方面。 他们之间最大的区别就是是否生成新的属性。 FS仅仅对特征进行排序(Ranking)和选
阅读全文
摘要:知道这个库已经很长的时间了,一直没有实践,以前也看过svm的理论,今天开始安装一下一直感觉有错误,结果自己傻了,根本没有错,可以直接使用。。。 libsvm参考资料: libsvm下载网址:http://www.csie.ntu.edu.tw/~cjlin/libsvm/ 我的系统环境为 Win7
阅读全文
摘要:首先说交叉验证。交叉验证(Cross validation)是一种评估统计分析、机器学习算法对独立于训练数据的数据集的泛化能力(generalize), 能够避免过拟合问题。交叉验证一般要尽量满足:1)训练集的比例要足够多,一般大于一半2)训练集和测试集要均匀抽样 交叉验证主要分成以下几类:1)Do
阅读全文
摘要:1. 常用激活函数 激活函数的选择是构建神经网络过程中的重要环节,下面简要介绍常用的激活函数。 (1) 线性函数 ( Liner Function ) (2) 斜面函数 ( Ramp Function ) (3) 阈值函数 ( Threshold Function ) 以上3个激活函数都属于线性函数
阅读全文
摘要:参考:sklearn 数据集认识: 目录 载入示例数据 一个改变数据集大小的示例:数码数据集(digits datasets) 学习和预测 分类 K最近邻(KNN)分类器 训练集和测试集 分类支持向量机(SVMs) 线性支持向量机 使用核 聚类:将观测值聚合 k均值聚类 应用到图像压缩 用主成分分析
阅读全文
摘要:KNN最邻近规则,主要应用领域是对未知事物的识别,即判断未知事物属于哪一类,判断思想是,基于欧几里得定理,判断未知事物的特征和哪一类已知事物的的特征最接近; K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如
阅读全文
摘要:国际权威的学术组织the IEEE International Conference on Data Mining (ICDM) 2006年12月评选出了数据挖掘领域的十大经典算法:C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, N
阅读全文
摘要:神经网络是一门重要的机器学习技术。它是目前最为火热的研究方向--深度学习的基础。学习神经网络不仅可以让你掌握一门强大的机器学习方法,同时也可以更好地帮助你理解深度学习技术。 本文以一种简单的,循序的方式讲解神经网络。适合对神经网络了解不多的同学。本文对阅读没有一定的前提要求,但是懂一些机器学习基础会
阅读全文
摘要:李宏毅 (Hung-yi Lee):http://speech.ee.ntu.edu.tw/~tlkagk/index.html Hsuan-Tien Lin:https://www.csie.ntu.edu.tw/~htlin/ Hsuan-Tien Lin:https://www.csie.nt
阅读全文
摘要:一、传统图像算法工程师: 主要涉及图形处理,包括形态学、图像质量、相机成像之3A算法、去雾处理、颜色空间转换、滤镜等,主要在安防公司或者机器视觉领域,包括缺陷检测; 二、现代图像算法工程师: 涉及模式识别,主要表现的经验为Adaboost、SVM的研究与应用,特征选取与提取,包括智能驾驶的研究与应用
阅读全文
摘要:svm分类算法在opencv3中有了很大的变动,取消了CvSVMParams这个类,因此在参数设定上会有些改变。 opencv中的svm分类代码,来源于libsvm。 结果: 如果只是简单的点分类,svm的参数设置就这么两行就行了,但如果是其它更为复杂的分类,则需要设置更多的参数。 由于opencv
阅读全文
摘要:参考:http://www.cnblogs.com/pinard/p/6056319.html 之前对决策树的算法原理做了总结,包括决策树算法原理(上)和决策树算法原理(下)。今天就从实践的角度来介绍决策树算法,主要是讲解使用scikit-learn来跑决策树算法,结果的可视化以及一些参数调参的关键
阅读全文
摘要:从机器学习谈起 介绍 工具是机器学习的重要组成部分,选择合适的工具与使用最好的算法同等重要。 在这篇文章中,你将会见识到各种机器学习工具。了解它们为什么重要,以及可供选择的工具类型。 为什么要使用工具 机器学习工具使得应用机器学习更快,更简单,更有趣。 更快:好工具可以自动化应用机器学习过程中的每一
阅读全文
摘要:逻辑回归(Logistic Regression, LR)模型其实仅在线性回归的基础上,套用了一个逻辑函数,但也就由于这个逻辑函数,使得逻辑回归模型成为了机器学习领域一颗耀眼的明星,更是计算广告学的核心。本文主要详述逻辑回归模型的基础,至于逻辑回归模型的优化、逻辑回归与计算广告学等,请关注后续文章。
阅读全文
摘要:[Machine Learning & Algorithm] 随机森林(Random Forest) 前言: 决策树这种算法有着很多良好的特性,比如说训练时间复杂度较低,预测的过程比较快速,模型容易展示(容易将得到的决策树做成图片展示出来)等。但是同时,单决策树又有一些不好的地方,比如说容易over
阅读全文
摘要:参考:http://blog.csdn.net/mousever/article/details/45967643 概率分布之间的距离度量以及python实现 http://www.cnblogs.com/wentingtu/archive/2012/05/03/2479919.html 1. 欧氏
阅读全文
摘要:1.相对于容易过度拟合训练样本的人工神经网络,支持向量机对于未见过的测试样本具有更好的推广能力。 2.SVM更偏好解释数据的简单模型 二维空间中的直线,三维空间中的平面和更高维空间中的超平面。 3.SVM正是从线性可分情况下的最优分类面发展而来,主要思想就是寻找能够成功分开两类样本并且有最大分类间隔
阅读全文
摘要:通常而言,损失函数由损失项(loss term)和正则项(regularization term)组成。发现一份不错的介绍资料: http://www.ics.uci.edu/~dramanan/teaching/ics273a_winter08/lectures/lecture14.pdf (题名
阅读全文


浙公网安备 33010602011771号