Prim复杂度是\(O(n^2+m)\),堆优化/zkw线段树优化之后是\(O((n+m)logn)\)
Prim与Kruskal的区别:
Prim在稠密图中比Kruskal优,在稀疏图中比Kruskal劣。Prim是以更新过的节点的连边找最小值,Kruskal是直接将边排序。
Prim堆优化代码如下:
#include<bits/stdc++.h>
using namespace std;
typedef pair<int,int> pii;
priority_queue<pii,vector<pii>,greater<pii> >Q;//小根堆 优先队列
const int N=10001;
const int M=4e5+10;
struct node{//链式前向星
int next;
int from;
int to;
int dis;
}edge[M];
int n,m;
int head[N],edge_num;
void add(int x,int y,int w){
edge[++edge_num].to=y;
edge[edge_num].dis=w;
edge[edge_num].next=head[x];
head[x]=edge_num;
}
int dis[N+10],vis[N+10];
int prim(){
for(int i=1;i<=n;++i){
dis[i]=0x3f3f3f3f;
}
dis[1]=0;
int sum=0;
Q.push(make_pair(0,1));
int cnt=0;
while(!Q.empty()){
int weight=Q.top().first;
int to=Q.top().second;
Q.pop();
if(vis[to])continue;
sum+=weight;
vis[to]=1;
if(cnt==n-1)break;
for(int i=head[to];i;i=edge[i].next){
int newx=edge[i].to;
int neww=edge[i].dis;
if(dis[newx]>neww){//松弛
dis[newx]=neww;
Q.push(make_pair(neww,newx));
}
}
}
return sum;
}
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=m;++i){
int x,y,w;
scanf("%d%d%d",&x,&y,&w);
add(x,y,w);
add(y,x,w);
}
int ans=prim();
printf("%d\n",ans);
return 0;
}