[UVa-1347] Tour

题意

给出坐标系中n个点,要求从最左边的点出发,每一步只能往右走,走到最右边那个点。然后再从最右边那个点出发,每一步只能往左走,回到最左边那个点。整个过程中(除了起点),每个点必须经过且仅经过一次。问最短路(欧几里得距离)?

$n \leq 1000$。

Solution

问题等价于两个人从起点出发,走到最右边,两人不能经过同一个点,且两个人经过点的并集为所有点。那么一个人的路径确定以后另个人的路径一定确定。(就是去填补还没走的所有点)

$dp_{i,j}$表示$1..i$已经走完,且另一个人走到了$j$。枚举状态是$O(n^2)$的,可以通过维护路径前缀和$O(1)$转移。

复杂度$O(n^2)$。

记忆化搜索

/*By DennyQi 2019*/
#include <cstdio>
#include <queue>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int MAXN = 1010;
const int MAXM = 20010;
const int INF = 0x3f3f3f3f;
inline int Max(const int a, const int b){ return (a > b) ? a : b; }
inline int Min(const int a, const int b){ return (a < b) ? a : b; }
inline int read(){
    int x = 0; int w = 1; register char c = getchar();
    for(; c ^ '-' && (c < '0' || c > '9'); c = getchar());
    if(c == '-') w = -1, c = getchar();
    for(; c >= '0' && c <= '9'; c = getchar()) x = (x<<3) + (x<<1) + c - '0'; return x * w;
}
struct Coordinate{
    double x,y;
}a[MAXN];
int n;
double dp[MAXN][MAXN];
bool vis[MAXN][MAXN];
inline bool cmp(const Coordinate& a, const Coordinate& b){
    return a.x < b.x;
}
inline double dist(int i, int j){
    double res = 0.0;
    res = sqrt((a[i].x-a[j].x)*(a[i].x-a[j].x) + (a[i].y-a[j].y)*(a[i].y-a[j].y));
    return res;
}
double DP(int a, int b){
    if(a < b) swap(a,b);
    if(a == n){
        return dist(b,n);
    }
    if(vis[a][b] || vis[b][a]) return dp[a][b];
    vis[a][b] = vis[b][a] = 1;
    dp[a][b] = min(DP(a+1,b)+dist(a,a+1), DP(a,a+1)+dist(b,a+1));
    dp[b][a] = dp[a][b];
    return dp[a][b];
}
int main(){
    freopen(".in","r",stdin);
    n = read();
    for(int i = 1; i <= n; ++i){
        scanf("%lf%lf",&a[i].x,&a[i].y);
    }
    sort(a+1,a+n+1,cmp);
    printf("%.2f", DP(1,1));
    return 0;
} 

 

刷表法

dp[1][1] = 0;
    for(int i = 1; i <= n; ++i){
        for(int j = i; j <= n; ++j){
            if(i==j && i>1 && i<n) continue;
            if(j < n){
                dp[i][j+1] = min(dp[i][j+1], dp[i][j] + dist(j,j+1));
                dp[j][j+1] = min(dp[j][j+1], dp[i][j] + dist(i,j+1));
            }
            else{
                dp[n][n] = dp[i][n] + dist(i,n);
            }
        }
    }

填表法

dp[1][1] = 0;
    for(int i = 1; i <= n; ++i){
        for(int j = i; j <= n; ++j){
            if(i==j && i<n) continue;
            dp[i][j] = dp[i][j-1] + dist(j-1,j);
            if(i+1 == j){
                for(int k = i-1; k >= 1; --k){
                    dp[i][j] = min(dp[i][j], dp[i][k] + dist(k,j));
                }
            }
            dp[j][i] = dp[i][j];
        }
    }

 

posted @ 2019-02-14 09:24  DennyQi  阅读(189)  评论(0编辑  收藏  举报